Skip to main content
Log in

Identifying microRNAs targeting Wnt/β-catenin pathway in end-stage idiopathic pulmonary arterial hypertension

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play important roles in the pathogenesis of pulmonary arterial hypertension (PAH). However, the pathways targeted by miRNAs in PAH have not been systematically investigated. We aim to identify dysregulated miRNAs for patients with idiopathic PAH (IPAH). miRNA profiling was performed on lung tissue total RNA from eight IPAH patients and eight control subjects. Real-time quantitative RT-PCR (qRT-PCR) was used for validation of miRNA and mRNA expression levels in 14 IPAH patients and 14 control subjects. Pathway enrichment analysis showed that Wnt/β-catenin signaling is among the top PAH-related pathways enriched in target genes of dysregulated miRNAs. We confirmed the significant increased expression levels of five miRNAs (let-7a-5p, miR-26b-5p, miR-27b-3p, miR-199a-3p and miR-656) targeting major PAH-related pathways. Moreover, qRT-PCR validation of Wnt/β-catenin pathway activation indicated multiple genes including receptors (FZD4, FZD5), core molecule (CTNNB1), and downstream targets (CCND1, VEGFA, and AXIN2) were significantly upregulated. The expression level of miR-199b-5p was positively correlated with patients’ hemodynamics (PVR: r = 0.522, p = 0.038) and pulmonary vascular remodeling (muscularization: r = 0.540, p = 0.021). We confirmed overexpression of miR-199b-5p in hypoxic pulmonary arterial endothelial cells that negatively regulates GSK3B expression. In summary, miRNAs influence the pathogenesis of PAH by regulating major PAH-related pathways including Wnt/β-catenin in end-stage IPAH.

Key message

  • It is the first miRNA profiling study in lung tissue from end-stage idiopathic PAH.

  • We identified dysregulated miRNAs and major pathways (e.g., Wnt signaling) in IPAH.

  • Levels of miRNA expression were correlated with hemodynamics and pathological changes.

  • We observed aberrant expression of target genes in the Wnt/β-catenin pathway.

  • miRNAs influence the pathogenesis of PAH by regulating major PAH-related pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rubin LJ (1997) Primary pulmonary hypertension. N Engl J Med 336(2):111–117

    Article  CAS  PubMed  Google Scholar 

  2. Pietra GG, Capron F, Stewart S, Leone O, Humbert M, Robbins IM, Reid LM, Tuder RM (2004) Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 43(12 Suppl S):25S–32S

    Article  PubMed  Google Scholar 

  3. Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S (2007) Pathology of pulmonary hypertension. Clin Chest Med 28(1):23–42, vii

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, Jessup M, Grizzle WE, Aldred MA, Cool CD et al (2012) Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 186(3):261–272

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM (1998) Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 101(5):927–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Masri FA, Xu W, Comhair SA, Asosingh K, Koo M, Vasanji A, Drazba J, Anand-Apte B, Erzurum SC (2007) Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 293(3):L548–L554

    Article  CAS  PubMed  Google Scholar 

  7. Cottrill KA, Chan SY (2013) Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect. Eur J Clin Investig 43(8):855–865

    Article  CAS  Google Scholar 

  8. Tuder RM, Voelkel NF (2002) Angiogenesis and pulmonary hypertension: a unique process in a unique disease. Antioxid Redox Signal 4(5):833–843

    Article  CAS  PubMed  Google Scholar 

  9. West JD, Austin ED, Gaskill C, Marriott S, Baskir R, Bilousova G, Jean JC, Hemnes AR, Menon S, Bloodworth NC et al (2014) Identification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension. Am J Physiol Cell Physiol 307(5):C415–C430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Laumanns IP, Fink L, Wilhelm J, Wolff JC, Mitnacht-Kraus R, Graef-Hoechst S, Stein MM, Bohle RM, Klepetko W, Hoda MA et al (2009) The noncanonical WNT pathway is operative in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol 40(6):683–691

    Article  CAS  PubMed  Google Scholar 

  11. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  12. Rhodes CJ, Wharton J, Boon RA, Roexe T, Tsang H, Wojciak-Stothard B, Chakrabarti A, Howard LS, Gibbs JS, Lawrie A et al (2013) Reduced microRNA-150 is associated with poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 187(3):294–302

    Article  CAS  PubMed  Google Scholar 

  13. Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J et al (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208(3):535–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30(20):2493–2537

    Article  PubMed  Google Scholar 

  15. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, Manes A, Satoh T, Torres F et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62(25 Suppl):D42–D50

    Article  PubMed  Google Scholar 

  16. Cohen ED, Tian Y, Morrisey EE (2008) Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 135(5):789–798

    Article  CAS  PubMed  Google Scholar 

  17. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26

    Article  CAS  PubMed  Google Scholar 

  18. Howard LS (2011) Prognostic factors in pulmonary arterial hypertension: assessing the course of the disease. Eur Respir Rev 20(122):236–242

    Article  CAS  PubMed  Google Scholar 

  19. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  20. Chen T, Zhou G, Zhou Q, Tang H, Ibe JC, Cheng H, Gou D, Chen J, Yuan JX, Raj JU (2015) Loss of microRNA-17 approximately 92 in smooth muscle cells attenuates experimental pulmonary hypertension via induction of PDZ and LIM domain 5. Am J Respir Crit Care Med 191(6):678–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parikh VN, Jin RC, Rabello S, Gulbahce N, White K, Hale A, Cottrill KA, Shaik RS, Waxman AB, Zhang YY et al (2012) MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation 125(12):1520–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang S, Banerjee S, Freitas A, Cui H, Xie N, Abraham E, Liu G (2012) miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 302(6):L521–L529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299(6):L861–L871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bertero T, Cottrill K, Krauszman A, Lu Y, Annis S, Hale A, Bhat B, Waxman AB, Chau BN, Kuebler WM et al (2015) The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension. J Biol Chem 290(4):2069–2085

    Article  CAS  PubMed  Google Scholar 

  25. Bertero T, Lu Y, Annis S, Hale A, Bhat B, Saggar R, Saggar R, Wallace WD, Ross DJ, Vargas SO et al (2014) Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J Clin Invest 124(8):3514–3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, Hata A (2011) Down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem 286(32):28097–28110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L, Lu R, White K, Mair KM, McClure JD, Southwood M et al (2012) A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res 111(3):290–300

    Article  CAS  PubMed  Google Scholar 

  28. Bockmeyer CL, Maegel L, Janciauskiene S, Rische J, Lehmann U, Maus UA, Nickel N, Haverich A, Hoeper MM, Golpon HA et al (2012) Plexiform vasculopathy of severe pulmonary arterial hypertension and microRNA expression. J Heart Lung Transplant 31(7):764–772

    Article  PubMed  Google Scholar 

  29. Meloche J, Pflieger A, Vaillancourt M, Paulin R, Potus F, Zervopoulos S, Graydon C, Courboulin A, Breuils-Bonnet S, Tremblay E et al (2014) Role for DNA damage signaling in pulmonary arterial hypertension. Circulation 129(7):786–797

    Article  CAS  PubMed  Google Scholar 

  30. Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X, Aldred MA, McLean DL, Park H, Comhair SA, Greif DM et al (2013) An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med 19(1):74–82

    Article  CAS  PubMed  Google Scholar 

  31. Kim J, Hwangbo C, Hu X, Kang Y, Papangeli I, Mehrotra D, Park H, Ju H, McLean DL, Comhair SA et al (2015) Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension. Circulation 131(2):190–199

    Article  PubMed  Google Scholar 

  32. Shi L, Kojonazarov B, Elgheznawy A, Popp R, Dahal BK, Bohm M, Pullamsetti SS, Ghofrani HA, Godecke A, Jungmann A et al (2016) miR-223-IGF-IR signalling in hypoxia- and load-induced right-ventricular failure: a novel therapeutic approach. Cardiovasc Res. doi:10.1093/cvr/cvw065

    Google Scholar 

  33. Meloche J, Le Guen M, Potus F, Vinck J, Ranchoux B, Johnson I, Antigny F, Tremblay E, Breuils-Bonnet S, Perros F et al (2015) miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol 309(6):C363–C372

    Article  CAS  PubMed  Google Scholar 

  34. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goodwin AM, D’Amore PA (2002) Wnt signaling in the vasculature. Angiogenesis 5(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  36. Fantozzi I, Huang W, Zhang J, Zhang S, Platoshyn O, Remillard CV, Thistlethwaite PA, Yuan JX (2005) Divergent effects of BMP-2 on gene expression in pulmonary artery smooth muscle cells from normal subjects and patients with idiopathic pulmonary arterial hypertension. Exp Lung Res 31(8):783–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rai PR, Cool CD, King JA, Stevens T, Burns N, Winn RA, Kasper M, Voelkel NF (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178(6):558–564

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen Z, Lai TC, Jan YH, Lin FM, Wang WC, Xiao H, Wang YT, Sun W, Cui X, Li YS et al (2013) Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J Clin Invest 123(3):1057–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Caruso P, MacLean MR, Khanin R, McClure J, Soon E, Southgate M, MacDonald RA, Greig JA, Robertson KE, Masson R et al (2010) Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol 30(4):716–723

    Article  CAS  PubMed  Google Scholar 

  40. Schlosser K, White RJ, Stewart DJ (2013) miR-26a linked to pulmonary hypertension by global assessment of circulating extracellular microRNAs. Am J Respir Crit Care Med 188(12):1472–1475

    Article  CAS  PubMed  Google Scholar 

  41. Kang BY, Park KK, Green DE, Bijli KM, Searles CD, Sutliff RL, Hart CM (2013) Hypoxia mediates mutual repression between microRNA-27a and PPARgamma in the pulmonary vasculature. PLoS One 8(11), e79503. doi:10.1371/journal.pone.0079503

    Article  PubMed  PubMed Central  Google Scholar 

  42. Reddy S, Zhao M, Hu DQ, Fajardo G, Hu S, Ghosh Z, Rajagopalan V, Wu JC, Bernstein D (2012) Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genomics 44(10):562–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ball MK, Waypa GB, Mungai PT, Nielsen JM, Czech L, Dudley VJ, Beussink L, Dettman RW, Berkelhamer SK, Steinhorn RH et al (2014) Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1alpha. Am J Respir Crit Care Med 189(3):314–324

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rajkumar R, Konishi K, Richards TJ, Ishizawar DC, Wiechert AC, Kaminski N, Ahmad F (2010) Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension. Am J Physiol Heart Circ Physiol 298(4):H1235–H1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brock M, Haider TJ, Vogel J, Gassmann M, Speich R, Trenkmann M, Ulrich S, Kohler M, Huber LC (2015) The hypoxia-induced microRNA-130a controls pulmonary smooth muscle cell proliferation by directly targeting CDKN1A. Int J Biochem Cell Biol 61:129–137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the JHMI Deep Sequencing and Array Facility for performing the work on miRNA arrays. The authors thank Brian Graham for pathology assistance and Alan Berger for helpful discussions. Tissue samples were provided by the Genomics Core and Tissue Core under the Pulmonary Hypertension Breakthrough Initiative (PHBI). Funding for the PHBI is provided by the Cardiovascular Medical Research and Education Fund (CMREF). This work was supported by a Johns Hopkins University Microarray Grant to L.G. from Agilent Technologies, and National Institutes of Health (NIH) grant 1R03HL114937 to L.G., K.C.B. and P.M.H. In addition, LG was supported in part by the Gilead Sciences Research Scholars Program in Pulmonary Arterial Hypertension.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Gao.

Ethics declarations

Disclosure

The authors declare that they have no competing interests.

Authors’ contributions

D.W. performed molecular experiments, statistical analysis, and contributed to the manuscript. C.T. performed statistical analysis of the miRNA array data and contributed to the manuscript. Q.L. performed LNA-ISH. R.L.D. performed the forced expression and inhibition of miRNA experiment. Z.J. provided intellectual contributions to the manuscript regarding the role of estrogen and receptors. R.T. performed histopathological analysis and contributed to the manuscript. K.C.B. and P.M.H. provided intellectual contributions to the design of the experiments and contributed to the manuscript. L.G. conceived the project, performed experiments, data analysis, and contributed to the manuscript. All authors have read and approved the final manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1558 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Talbot, C.C., Liu, Q. et al. Identifying microRNAs targeting Wnt/β-catenin pathway in end-stage idiopathic pulmonary arterial hypertension. J Mol Med 94, 875–885 (2016). https://doi.org/10.1007/s00109-016-1426-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1426-z

Keywords

Navigation