Skip to main content
Log in

Inhibition of microRNA-155 ameliorates experimental autoimmune myocarditis by modulating Th17/Treg immune response

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Experimental autoimmune myocarditis (EAM) is an inflammatory cardiac disease driven by autoantigen-specific CD4+ T cells. Th17 and Treg cells are crucial participants in immune response. A wide variety of immune disorders are associated with Th17/Treg imbalance. MicroRNA-155 (miR-155) is a pivotal regulator of the immune system. However, the modulatory effect of miR-155 on Th17/Treg immune response during EAM is unknown. Our study aims to investigate the potential role of miR-155 on the development of autoimmune myocarditis. In this study, we revealed that miR-155 expression was highly elevated in heart tissue and CD4+ T cells during EAM. Also, we identified a proliferative and functional imbalance of Th17/Treg in EAM, which is due to a more active development of Th17 cells and an increased resistance of Th17 cells to Treg-mediated suppression. MiR-155 inhibition in EAM resulted in attenuated severity of disease and cardiac injury, reduced Th17 immune response, and decreased dendritic cell (DC) function of secreting Th17-polarizing cytokines. Furthermore, CD4+ T cells from miR-155-inhibited EAM mice exhibited reduced proliferation and IL-17A secretion in response to autoantigen. Finally, we confirmed an indispensable positive role of miR-155 on the differentiation of Th17 cells and the DC function of secreting Th17-polarizing cytokines through in vitro studies. These findings demonstrated that miR-155 adversely promotes EAM by driving a Th17/Treg imbalance in favor of Th17 cells, and anti-miR-155 treatment can significantly reduce the autoimmune response thus to ameliorate EAM, suggesting that miR-155 inhibition could be a promising therapeutic strategy for the treatment of autoimmune myocarditis.

Key message

  • MiR-155 expression was highly elevated in EAM mice.

  • An imbalance of Th17/Treg existed in EAM mice.

  • MiR-155 inhibition in EAM attenuated disease severity and cardiac injury.

  • MiR-155 inhibition suppressed Th17 immune response in EAM.

  • MiR-155 inhibition reduced DC function of secreting Th17-polarizing cytokines in EAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sagar S, Liu PP, Cooper LJ (2012) Myocarditis. Lancet 379:738–747

    Article  PubMed  Google Scholar 

  2. Caforio ALP, Marcolongo R, Jahns R, Fu M, Felix SB, Iliceto S (2013) Immune-mediated and autoimmune myocarditis: clinical presentation, diagnosis and management. Heart Fail Rev 18:715–732

    Article  CAS  PubMed  Google Scholar 

  3. Root-Bernstein R, Fairweather D (2014) Unresolved issues in theories of autoimmune disease using myocarditis as a framework. J Theor Biol. 10.1016/j.jtbi.2014.11.022*10.1016/j.jtbi.2014.11.022

  4. Muller AM, Fischer A, Katus HA, Kaya Z (2015) Mouse models of autoimmune diseases—autoimmune myocarditis. Curr Pharm Des 21:2498–2512

    Article  CAS  PubMed  Google Scholar 

  5. Wei B, Pei G (2010) microRNAs: critical regulators in Th17 cells and players in diseases. Cell Mol Immunol 7:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maddur MS, Miossec P, Kaveri SV, Bayry J (2012) Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol 181:8–18

    Article  CAS  PubMed  Google Scholar 

  7. Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140:845–858

    Article  CAS  PubMed  Google Scholar 

  8. Josefowicz SZ, Lu L, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

    Article  CAS  PubMed  Google Scholar 

  9. Chauhan SK, El AJ, Ecoiffier T, Goyal S, Zhang Q, Saban DR, Dana R (2009) Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol 182:1247–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang J, Chu Y, Yang X, Gao D, Zhu L, Yang X, Wan L, Li M (2009) Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum 60:1472–1483

    Article  PubMed  Google Scholar 

  11. Wang T, Sun X, Zhao J, Zhang J, Zhu H, Li C, Gao N, Jia Y, Xu D, Huang FP, Li N, Lu L, Li ZG (2014) Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis. 10.1136/annrheumdis-2013-204228*10.1136/annrheumdis-2013-204228

  12. Ganguly D, Haak S, Sisirak V, Reizis B (2013) The role of dendritic cells in autoimmunity. Nat Rev Immunol 13:566–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604

    Article  CAS  PubMed  Google Scholar 

  14. Mbongue J, Nicholas D, Firek A, Langridge W (2014) The role of dendritic cells in tissue-specific autoimmunity. J Immunol Res 2014:1–17

    Article  Google Scholar 

  15. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu S, Pan W, Qian Y (2013) MicroRNA in immunity and autoimmunity. J Mol Med 91:1039–1050

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vigorito E, Kohlhaas S, Lu D, Leyland R (2013) miR-155: an ancient regulator of the immune system. Immunol Rev 253:146–157

    Article  PubMed  Google Scholar 

  19. Blüml S, Bonelli M, Niederreiter B, Puchner A, Mayr G, Hayer S, Koenders MI, van den Berg WB, Smolen J, Redlich K (2011) Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum 63:1281–1288

    Article  PubMed  Google Scholar 

  20. Min M, Peng L, Yang Y, Guo M, Wang W, Sun G (2014) MicroRNA-155 is involved in the pathogenesis of ulcerative colitis by targeting FOXO3a. Inflamm Bowel Dis 20:652–659

    Article  PubMed  Google Scholar 

  21. Xin Q, Li J, Dang J, Bian X, Shan S, Yuan J, Qian Y, Liu Z, Liu G, Yuan Q et al (2015) miR-155 deficiency ameliorates autoimmune inflammation of systemic lupus erythematosus by targeting S1pr1 in Faslpr/lpr mice. J Immunol 194:5437–5445

    Article  CAS  PubMed  Google Scholar 

  22. Barin JG, Čiháková D (2013) Control of inflammatory heart disease by CD4. ANN NY Acad Sci 1285:80–96

    Article  CAS  PubMed  Google Scholar 

  23. Yuan J, Yu M, Lin QW, Cao AL, Yu X, Dong JH, Wang JP, Zhang JH, Wang M, Guo HP et al (2010) Th17 cells contribute to viral replication in coxsackievirus B3-induced acute viral myocarditis. J Immunol 185:4004–4010

    Article  CAS  PubMed  Google Scholar 

  24. Yamashita T, Iwakura T, Matsui K, Kawaguchi H, Obana M, Hayama A, Maeda M, Izumi Y, Komuro I, Ohsugi Y et al (2011) IL-6-mediated Th17 differentiation through ROR t is essential for the initiation of experimental autoimmune myocarditis. Cardiovasc Res 91:640–648

    Article  CAS  PubMed  Google Scholar 

  25. Huber SA, Feldman AM, Sartini D (2006) Coxsackievirus B3 induces T regulatory cells, which inhibit cardiomyopathy in tumor necrosis factor- transgenic mice. Circ Res 99:1109–1116

    Article  CAS  PubMed  Google Scholar 

  26. Shi Y, Fukuoka M, Li G, Liu Y, Chen M, Konviser M, Chen X, Opavsky MA, Liu PP (2010) Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway. Circulation 121:2624–2634

    Article  CAS  PubMed  Google Scholar 

  27. Cihakova D, Sharma RB, Fairweather D, Afanasyeva M, Rose NR (2004) Animal models for autoimmune myocarditis and autoimmune thyroiditis. Methods Mol Med 102:175–193

    CAS  PubMed  Google Scholar 

  28. Huber SA, Sartini D (2005) Roles of tumor necrosis factor alpha (TNF-alpha) and the p55 TNF receptor in CD1d induction and coxsackievirus B3-induced myocarditis. J Virol 79:2659–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92

    Article  CAS  PubMed  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  31. McMurchy AN, Levings MK (2012) Suppression assays with human T regulatory cells: a technical guide. Eur J Immunol 42:27–34

    Article  CAS  PubMed  Google Scholar 

  32. Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E (2009) Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 182:2578–2582

    Article  CAS  PubMed  Google Scholar 

  33. Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K et al (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30:80–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Linossi EM, Babon JJ, Hilton DJ, Nicholson SE (2013) Suppression of cytokine signaling: the SOCS perspective. Cytokine Growth F R 24:241–248

    Article  CAS  Google Scholar 

  35. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A 106:7113–7118

    Article  PubMed  PubMed Central  Google Scholar 

  36. Martinez-Nunez RT, Louafi F, Friedmann PS, Sanchez-Elsner T (2009) MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 284:16334–16342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu C, Huang X, Zhang X, Roensch K, Cao Q, Nakayama KI, Blazar BR, Zeng Y, Zhou X (2011) miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 117:4293–4303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seddiki N, Brezar V, Ruffin N, Lévy Y, Swaminathan S (2014) Role of miR-155 in the regulation of lymphocyte immune function and disease. Immunology 142:32–38

    Article  CAS  PubMed Central  Google Scholar 

  39. Tritt M, Sgouroudis E, D’Hennezel E, Albanese A, Piccirillo CA (2008) Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 57:113–123

    Article  CAS  PubMed  Google Scholar 

  40. Korn T, Anderson AC, Bettelli E, Oukka M (2007) The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. J Neuroimmunol 191:51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  Google Scholar 

  42. Eriksson U, Ricci R, Hunziker L, Kurrer MO, Oudit GY, Watts TH, Sonderegger I, Bachmaier K, Kopf M, Penninger JM (2003) Dendritic cell–induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 9:1484–1490

    Article  CAS  PubMed  Google Scholar 

  43. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122

    Article  PubMed  Google Scholar 

  44. Korn T, Reddy J, Gao W, Bettelli E, Awasthi A, Petersen TR, Backstrom BT, Sobel RA, Wucherpfennig KW, Strom TB et al (2007) Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 13:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  CAS  PubMed  Google Scholar 

  46. Stahl HF, Fauti T, Ullrich N, Bopp T, Kubach J, Rust W, Labhart P, Alexiadis V, Becker C, Hafner M et al (2009) miR-155 inhibition sensitizes CD4+ Th cells for TREG mediated suppression. PLoS One 4:e7158

    Article  PubMed  PubMed Central  Google Scholar 

  47. O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL, Baltimore D (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205:585–594

    Article  PubMed  PubMed Central  Google Scholar 

  48. Banerjee A, Schambach F, DeJong CS, Hammond SM, Reiner SL (2010) Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells. EUR J IMMUNOL 40: 225-231. doi:10.1002/eji.200939381*10.1002/eji.200939381

  49. Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF, Di Virgilio M, Reina SB, Heidkamp G, Schwickert TA et al (2008) MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28:630–638

  50. Yao R, Ma YL, Liang W, Li HH, Ma ZJ, Yu X, Liao YH (2012) MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS One 7, e46082. doi:10.1371/journal.pone.0046082*10.1371/journal.pone.0046082

  51. van Hamburg JP, de Bruijn MJ, Ribeiro DAC, van Zwam M, van Meurs M, de Haas E, Boon L, Samsom JN, Hendriks RW (2008) Enforced expression of GATA3 allows differentiation of IL-17-producing cells, but constrains Th17-mediated pathology. Eur J Immunol 38:2573–2586

  52. Lazarevic V, Chen X, Shim JH, Hwang ES, Jang E, Bolm AN, Oukka M, Kuchroo VK, Glimcher LH (2011) T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORgammat. Nat Immunol 12:96–104

  53. Nouraee N, Mowla SJ (2015) miRNA therapeutics in cardiovascular diseases: promises and problems. Frontiers in Genetics 6. 10.3389/fgene.2015.00232*10.3389/fgene.2015.00232.

Download references

Acknowledgments

We are grateful to all the members and the facilities of the experimental animal center of the Tongji Medical College for excellent animal care. This project was supported by grant from the National Natural Science Foundation of China (No. 81170205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Lianhua Yan and Fen Hu contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Hu, F., Yan, X. et al. Inhibition of microRNA-155 ameliorates experimental autoimmune myocarditis by modulating Th17/Treg immune response. J Mol Med 94, 1063–1079 (2016). https://doi.org/10.1007/s00109-016-1414-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1414-3

Keywords

Navigation