Skip to main content
Log in

Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Adiponectin protects against liver fibrosis, but the mechanisms have not been fully elucidated. Here, we showed that adiponectin upregulated inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) and protein expression in hepatic non-parenchymal cells, particularly in hepatic stellate cells (HSCs), and increased nitric oxide (NO2−/NO3−) concentration in HSC-conditioned medium. Adiponectin attenuated HSC proliferation and migration but promoted apoptosis in a NO-dependent manner. More advanced liver fibrosis with decreased iNOS/NO levels was observed in adiponectin knockout mice comparing to wide-type mice when administered with CCI4 while NO donor supplementation rescued the phenotype. Further experiments demonstrated that adiponectin-induced iNOS/NO system activation is mediated through adipoR2-AMPK-JNK/Erk1/2-NF-κB signaling. These data suggest that adiponectin inhibits HSC function, further limiting the development of liver fibrosis at least in part through adiponectin-induced NO release. Therefore, adiponectin-mediated NO signaling may be a novel target for the treatment of liver fibrosis.

Key messages

• Adiponectin activates HSC iNOS/NO and SEC eNOS/NO systems.

• Adiponectin inhibits HSC proliferation and migration but promotes its apoptosis.

• Adiponectin inhibits CCL4-induced liver fibrosis by modulation of liver iNOS/NO.

• Adiponectin stimulates HSC iNOS/NO via adipoR2-AMPK-JNK/ErK1/2-NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AD:

Adiponectin

AD KO:

Adiponectin knockout

AMPK:

Adenosine monophosphate-activated protein kinase

αSMA:

Alpha smooth muscle actin

CCL4:

Carbon tetrachloride

Erk1/2:

Extracellular signal-regulated kinase1/2

HSCs:

Hepatic stellate cells

iNOS:

Inducible nitric oxide synthase

JNK:

c-Jun terminal kinase

l-NAME:

NG-nitro-l-arginine methyl ester, hydrochloride

MAPK:

Ras-mitogen-activated protein kinase

NO:

Nitric oxide

nNOS:

Neuronal nitric oxide synthase

NF-κB:

Nuclear factor kappa B

PDGF:

Platelet-derived growth factor

PDTC:

Ammonium pyrrolidinedithiocarbamate

SECs:

Sinusoidal endothelial cells

siRNA:

Small interfering RNA

SMT:

S-methylisothiourea hemisulfate salt

TGFβ1:

Transforming growth factor beta 1

WT:

Wide type

References

  1. Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139

    Article  CAS  PubMed  Google Scholar 

  2. Masaki T, Chiba S, Tatsukawa H, Yasuda T, Noguchi H, Seike M, Yoshimatsu H (2004) Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology 40:177–184

    Article  CAS  PubMed  Google Scholar 

  3. Handy JA, Saxena NK, Fu P, Lin S, Mells JE, Gupta NA, Anania FA (2010) Adiponectin activation of AMPK disrupts leptin-mediated hepatic fibrosis via suppressors of cytokine signaling (SOCS-3). J Cell Biochem 110:1195–1207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kamada Y, Tamura S, Kiso S, Matsumoto H, Saji Y, Yoshida Y, Fukui K, Maeda N, Nishizawa H, Nagaretani H et al (2003) Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 125:1796–1807

    Article  CAS  PubMed  Google Scholar 

  5. Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA (2005) The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am J Pathol 166:1655–1669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Adachi M, Brenner DA (2008) High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology 47:677–685

    Article  CAS  PubMed  Google Scholar 

  7. Grebely J, Feld JJ, Applegate T, Matthews GV, Hellard M, Sherker A, Petoumenos K, Zang G, Shaw I, Yeung B et al (2013) Plasma interferon-gamma-inducible protein-10 (IP-10) levels during acute hepatitis C virus infection. Hepatology 57:2124–2134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gracia-Sancho J, Lavina B, Rodriguez-Vilarrupla A, Garcia-Caldero H, Fernandez M, Bosch J, Garcia-Pagan JC (2008) Increased oxidative stress in cirrhotic rat livers: a potential mechanism contributing to reduced nitric oxide bioavailability. Hepatology 47:1248–1256

    Article  CAS  PubMed  Google Scholar 

  9. Chen Y, Hozawa S, Sawamura S, Sato S, Fukuyama N, Tsuji C, Mine T, Okada Y, Tanino R, Ogushi Y et al (2005) Deficiency of inducible nitric oxide synthase exacerbates hepatic fibrosis in mice fed high-fat diet. Biochem Biophys Res Commun 326:45–51

    Article  CAS  PubMed  Google Scholar 

  10. Lukivskaya O, Patsenker E, Lis R, Buko VU (2008) Inhibition of inducible nitric oxide synthase activity prevents liver recovery in rat thioacetamide-induced fibrosis reversal. Eur J Clin Invest 38:317–325

    Article  CAS  PubMed  Google Scholar 

  11. Vercelino R, Crespo I, de Souza GF, Cuevas MJ, de Oliveira MG, Marroni NP, Gonzalez-Gallego J, Tunon MJ (2010) S-nitroso-N-acetylcysteine attenuates liver fibrosis in cirrhotic rats. J Mol Med (Berl) 88:401–411

    Article  CAS  Google Scholar 

  12. Failli P, De FR, Caligiuri A, Gentilini A, Romanelli RG, Marra F, Batignani G, Guerra CT, Laffi G, Gentilini P et al (2000) Nitrovasodilators inhibit platelet-derived growth factor-induced proliferation and migration of activated human hepatic stellate cells. Gastroenterology 119:479–492

    Article  CAS  PubMed  Google Scholar 

  13. Langer DA, Das A, Semela D, Kang-Decker N, Hendrickson H, Bronk SF, Katusic ZS, Gores GJ, Shah VH (2008) Nitric oxide promotes caspase-independent hepatic stellate cell apoptosis through the generation of reactive oxygen species. Hepatology 47:1983–1993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lee JS, Kang Decker N, Chatterjee S, Yao J, Friedman S, Shah V (2005) Mechanisms of nitric oxide interplay with Rho GTPase family members in modulation of actin membrane dynamics in pericytes and fibroblasts. Am J Pathol 166:1861–1870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Deleve LD, Wang X, Guo Y (2008) Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48:920–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kawada N, Kuroki T, Uoya M, Inoue M, Kobayashi K (1996) Smooth muscle alpha-actin expression in rat hepatic stellate cell is regulated by nitric oxide and cGMP production. Biochem Biophys Res Commun 229:238–242

    Article  CAS  PubMed  Google Scholar 

  17. Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, Wong C, Xu A (2007) Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes 56:1387–1394

    Article  PubMed  Google Scholar 

  18. Gonon AT, Widegren U, Bulhak A, Salehzadeh F, Persson J, Sjoquist PO, Pernow J (2008) Adiponectin protects against myocardial ischaemia-reperfusion injury via AMP-activated protein kinase, Akt, and nitric oxide. Cardiovasc Res 78:116–122

    Article  CAS  PubMed  Google Scholar 

  19. Nishimura M, Izumiya Y, Higuchi A, Shibata R, Qiu J, Kudo C, Shin HK, Moskowitz MA, Ouchi N (2008) Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation 117:216–223

    Article  CAS  PubMed  Google Scholar 

  20. Lago R, Gomez R, Otero M, Lago F, Gallego R, Dieguez C, Gomez-Reino JJ, Gualillo O (2008) A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthr Cartil 16:1101–1109

    Article  CAS  PubMed  Google Scholar 

  21. Koskinen A, Juslin S, Nieminen R, Moilanen T, Vuolteenaho K, Moilanen E (2011) Adiponectin associates with markers of cartilage degradation in osteoarthritis and induces production of proinflammatory and catabolic factors through mitogen-activated protein kinase pathways. Arthritis Res Ther 13:R184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278:45021–45026

    Article  CAS  PubMed  Google Scholar 

  23. Chang J, Li Y, Huang Y, Lam KS, Hoo RL, Wong WT, Cheng KK, Wang Y, Vanhoutte PM, Xu A (2010) Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes 59:2949–2959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. El Hasnaoui-Saadani R, Alayza RC, Launay T, Pichon A, Quidu P, Beaudry M, Leon-Velarde F, Richalet JP, Duvallet A, Favret F (1985) Brain stem NO modulates ventilatory acclimatization to hypoxia in mice. J Appl Physiol 103:1506–1512

    Article  Google Scholar 

  25. Lowenstein CJ, Alley EW, Raval P, Snowman AM, Snyder SH, Russell SW, Murphy WJ (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci U S A 90:9730–9734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Xie QW, Whisnant R, Nathan C (1993) Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med 177:1779–1784

    Article  CAS  PubMed  Google Scholar 

  27. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF (2001) Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 98:2005–2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Article  CAS  PubMed  Google Scholar 

  29. Shah V, Cao S, Hendrickson H, Yao J, Katusic ZS (2001) Regulation of hepatic eNOS by caveolin and calmodulin after bile duct ligation in rats. Am J Physiol Gastrointest Liver Physiol 280:G1209–G1216

    CAS  PubMed  Google Scholar 

  30. Leifeld L, Fielenbach M, Dumoulin FL, Speidel N, Sauerbruch T, Spengler U (2002) Inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) expression in fulminant hepatic failure. J Hepatol 37:613–619

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Zhao CY, Wang YD, He X, Shen C, Cao W, Zhou JY, Zhen Z (2011) Adiponectin inhibits the activation of hepatic stellate cells induced by TGFb1 via up-regulating the expression of eNOS. Zhonghua Gan Zang Bing Za Zhi 19:917–922

    CAS  PubMed  Google Scholar 

  32. Caligiuri A, Bertolani C, Guerra CT, Aleffi S, Galastri S, Trappoliere M, Vizzutti F, Gelmini S, Laffi G, Pinzani M et al (2008) Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells. Hepatology 47:668–676

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ, Xu A (2005) Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem 280:18341–18347

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Billiar TR (1999) Nitric oxide. IV. Determinants of nitric oxide protection and toxicity in liver. Am J Physiol 276:G1069–G1073

    CAS  PubMed  Google Scholar 

  35. Rockey DC, Shah V (2004) Nitric oxide biology and the liver: report of an AASLD research workshop. Hepatology 39:250–257

    Article  PubMed  Google Scholar 

  36. Chen T, Zamora R, Zuckerbraun B, Billiar TR (2003) Role of nitric oxide in liver injury. Curr Mol Med 3:519–526

    Article  CAS  PubMed  Google Scholar 

  37. Clemens MG (1999) Nitric oxide in liver injury. Hepatology 30:1–5

    Article  CAS  PubMed  Google Scholar 

  38. Shah V, Haddad FG, Garcia-Cardena G, Frangos JA, Mennone A, Groszmann RJ, Sessa WC (1997) Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest 100:2923–2930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Suematsu M, Goda N, Sano T, Kashiwagi S, Egawa T, Shinoda Y, Ishimura Y (1995) Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest 96:2431–2437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Utz J, Ullrich V (1991) Carbon monoxide relaxes ileal smooth muscle through activation of guanylate cyclase. Biochem Pharmacol 41:1195–1201

    Article  CAS  PubMed  Google Scholar 

  41. Furchgott RF, Jothianandan D (1991) Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 28:52–61

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Xin Wang (Flow Cytometry Facility, Westmead Millennium Institute) and Hong Yu (Microscopy Unit, Westmead Millennium Institute) for technical assistance. This study was supported by the National Health and Medical Research Council of Australia (AP1004595 and a Program Grant 1053206) and the Robert W. Storr Bequest to the University of Sydney.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wang.

Additional information

Zhixia Dong and Lin Su contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Su, L., Esmaili, S. et al. Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells. J Mol Med 93, 1327–1339 (2015). https://doi.org/10.1007/s00109-015-1313-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1313-z

Keywords

Navigation