Skip to main content

Advertisement

Log in

Transcriptional programming of human macrophages: on the way to systems immunology

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Many of the major common diseases such as atherosclerosis, diabetes, obesity, numerous autoimmune diseases, as well as neurodegenerative diseases such as Alzheimer’s disease and many cancer types are characterised by a chronic inflammatory component termed sterile inflammation. Myeloid cells, particularly macrophages, are an important cellular component of chronic inflammation in these diseases. For almost all of these disease conditions, previous reports suggested that macrophages can exert either so-called pro-inflammatory or anti-inflammatory functions, thereby either fighting or feeding the disease. This apparent dichotomy of reactions of macrophages led to a dichotomous definition of macrophage activation classified as macrophage polarisation. However, analysis of large transcriptomics data derived from human and murine macrophages show that macrophage functions are shaped in a very tissue- and signal-input specific manner, allowing these cells to develop extremely specific functional programmes. Integrating global views on macrophage activation on the transcriptome, the epigenome, the proteome or the metabolome will finally lead to a data-driven approach to understand macrophage biology in context of major diseases. We are indeed on the way to a systems immunology approach that integrates -omics data with mathematical and bioinformatical modelling as the pre-requisite to generate data-driven hypotheses. This approach opens completely new avenues for the development of tailored diagnostics and therapies targeting macrophages in sterile inflammations of the major common diseases. I will also discuss some of the next developments that will be necessary to reach these important goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. The Nobel Prize in Physiology or Medicine 1908. Nobelprize.org. Nobel Media AB 2014. Web. 28 Oct 2014. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1908/

  2. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. McNelis JC, Olefsky JM (2014) Macrophages, immunity, and metabolic disease. Immunity 41:36–48

    Article  CAS  PubMed  Google Scholar 

  4. Taghavie-Moghadam PL, Butcher MJ, Galkina EV (2014) The dynamic lives of macrophage and dendritic cell subsets in atherosclerosis. Ann N Y Acad Sci 1319:19–37

    Article  CAS  PubMed  Google Scholar 

  5. Randolph GJ (2014) Mechanisms that regulate macrophage burden in atherosclerosis. Circ Res 114:1757–1771

    Article  CAS  PubMed  Google Scholar 

  6. Murphy AJ, Dragoljevic D, Tall AR (2014) Cholesterol efflux pathways regulate myelopoiesis: a potential link to altered macrophage function in atherosclerosis. Front Immunol 5:490

    Article  PubMed Central  PubMed  Google Scholar 

  7. Habib A, Finn AV (2014) The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis. Front Pharmacol 5:195

    Article  PubMed Central  PubMed  Google Scholar 

  8. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477

    Article  CAS  PubMed  Google Scholar 

  10. Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nat Rev Neurol 10:217–224

    Article  CAS  PubMed  Google Scholar 

  11. Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A (2014) Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol 5:127

    PubMed Central  PubMed  Google Scholar 

  12. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Hsu HC, Mountz JD (2012) Managing macrophages in rheumatoid arthritis by reform or removal. Curr Rheumatol Rep 14:445–454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lewis MR, Lewis WH (1926) Transformation of mononuclear blood cells into macrophages, epithelioid cells, and giant cells in hanging drop blood cultures from lower vertebrates. Washington, DC: Carnegie Institute Publ 96 Contrib Embrol 18: 95–98

  15. Cohn ZA, Benson B (1965) The differentiation of mononuclear phagocytes. Morphology, cytochemistry, and biochemistry. J Exp Med 121:153–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128:415–435

    Article  PubMed Central  PubMed  Google Scholar 

  17. Nichols BA, Bainton DF, Farquhar MG (1971) Differentiation of monocytes. Origin, nature, and fate of their azurophil granules. J Cell Biol 50:498–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. De Kleer I, Willems F, Lambrecht B, Goriely S (2014) Ontogeny of myeloid cells. Front Immunol 5:423

    Article  PubMed Central  PubMed  Google Scholar 

  19. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90

    Article  CAS  PubMed  Google Scholar 

  20. Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M, Low D, Oller G, Almeida F et al (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209:1167–1181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bertrand JY, Jalil A, Klaine M, Jung S, Cumano A, Godin I (2005) Three pathways to mature macrophages in the early mouse yolk sac. Blood 106:3004–3011

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins SJ, Hume DA (2014) Homeostasis in the mononuclear phagocyte system. Trends Immunol 35:358–367

    Article  CAS  PubMed  Google Scholar 

  24. Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ralph M. Steinman—Facts. Nobelprize.org. Nobel Media AB 2014. Web. 28 Oct 2014. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2011/steinman-factshtml

  26. Hume DA, Freeman TC (2014) Transcriptomic analysis of mononuclear phagocyte differentiation and activation. Immunol Rev 262:74–84

    Article  CAS  PubMed  Google Scholar 

  27. Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, Cohain A, Pandey G, Leboeuf M, Elpek KG, Helft J et al (2012) Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol 13:888–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hume DA, Mabbott N, Raza S, Freeman TC (2013) Can DCs be distinguished from macrophages by molecular signatures? Nat Immunol 14:187–189

    Article  CAS  PubMed  Google Scholar 

  30. Boldrick JC, Alizadeh AA, Diehn M, Dudoit S, Liu CL, Belcher CE, Botstein D, Staudt LM, Brown PO, Relman DA (2002) Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci U S A 99:972–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, Young RA (2002) Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A 99:1503–1508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Locati M, Mantovani A, Sica A (2013) Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol 120:163–184

    Article  CAS  PubMed  Google Scholar 

  33. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Biswas SK, Mantovani A (2012) Orchestration of metabolism by macrophages. Cell Metab 15:432–437

    Article  CAS  PubMed  Google Scholar 

  35. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  CAS  PubMed  Google Scholar 

  36. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  37. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23:344–346

    Article  CAS  PubMed  Google Scholar 

  38. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  39. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    Article  CAS  PubMed  Google Scholar 

  40. Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636–645

    Article  CAS  PubMed  Google Scholar 

  41. Sironi M, Martinez FO, D’Ambrosio D, Gattorno M, Polentarutti N, Locati M, Gregorio A, Iellem A, Cassatella MA, Van Damme J et al (2006) Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J Leukoc Biol 80:342–349

    Article  CAS  PubMed  Google Scholar 

  42. Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K, Ouyang GF, Okada M, Balazs M, Adany R et al (2008) Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 83:1136–1144

    Article  CAS  PubMed  Google Scholar 

  43. Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, Tsuneyama K, Nagai Y, Takatsu K, Urakaze M et al (2009) Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58:2574–2582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Fernandez-Velasco M, Gonzalez-Ramos S, Bosca L (2014) Involvement of monocytes/macrophages as key factors in the development and progression of cardiovascular diseases. Biochem J 458:187–193

    Article  CAS  PubMed  Google Scholar 

  45. Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N et al (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Nairz M, Schroll A, Demetz E, Tancevski I, Theurl I, Weiss G (2014) ‘Ride on the ferrous wheel’—the cycle of iron in macrophages in health and disease. Immunobiology 220:280–294

    Article  PubMed  Google Scholar 

  48. Sene A, Apte RS (2014) Eyeballing cholesterol efflux and macrophage function in disease pathogenesis. Trends Endocrinol Metab 25:107–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Afonso Mda S, Castilho G, Lavrador MS, Passarelli M, Nakandakare ER, Lottenberg SA, Lottenberg AM (2014) The impact of dietary fatty acids on macrophage cholesterol homeostasis. J Nutr Biochem 25:95–103

    Article  PubMed  Google Scholar 

  50. Nagy ZS, Czimmerer Z, Nagy L (2013) Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism. Mol Cell Endocrinol 368:85–98

    Article  CAS  PubMed  Google Scholar 

  51. Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D et al (2012) Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151:138–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Umetani M, Ghosh P, Ishikawa T, Umetani J, Ahmed M, Mineo C, Shaul PW (2014) The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell Metab 20:172–182

    Article  CAS  PubMed  Google Scholar 

  53. Fu Y, Mukhamedova N, Ip S, D’Souza W, Henley KJ, DiTommaso T, Kesani R, Ditiatkovski M, Jones L, Lane RM et al (2013) ABCA12 regulates ABCA1-dependent cholesterol efflux from macrophages and the development of atherosclerosis. Cell Metab 18:225–238

    Article  CAS  PubMed  Google Scholar 

  54. De Nardo D, Labzin LI, Kono H, Seki R, Schmidt SV, Beyer M, Xu D, Zimmer S, Lahrmann C, Schildberg FA et al (2014) High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol 15:152–160

    Article  PubMed Central  PubMed  Google Scholar 

  55. Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, Li J (2014) Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 26:192–197

    Article  CAS  PubMed  Google Scholar 

  56. Xue J, Schmidt SV, Sander J, Draffehn AM, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L et al (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326

    Article  CAS  PubMed  Google Scholar 

  58. Gosselin D, Link VM, Romanoski Casey E, Fonseca Gregory J, Eichenfield Dawn Z, Spann Nathanael J, Stender Joshua D, Chun Hyun B, Garner H, Geissmann F et al (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340

    Article  CAS  PubMed  Google Scholar 

  59. Shaykhiev R, Krause A, Salit J, Strulovici-Barel Y, Harvey BG, O’Connor TP, Crystal RG (2009) Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol 183:2867–2883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    Article  CAS  PubMed  Google Scholar 

  61. Robert C, Lu X, Law A, Freeman TC, Hume DA (2011) Macrophages.com: an on-line community resource for innate immunity research. Immunobiology 216:1203–1211

    Article  CAS  PubMed  Google Scholar 

  62. Edgar R, Domrachve M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Ison J, Keays M et al (2013) ArrayExpress update—trends in database growth and links to data analysis tools. Nucleic Acids Res 41:D987–D990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Lynn DJ, Winsor GL, Chan C, Richard N, Laird MR, Barsky A, Gardy JL, Roche FM, Chan TH, Shah N et al (2008) InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 4:218

    Article  PubMed Central  PubMed  Google Scholar 

  65. McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17:4–11

    Article  CAS  PubMed  Google Scholar 

  66. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, Sommer D, Sander J, Mertens C, Nino-Castro A et al (2012) High-resolution transcriptome of human macrophages. PLoS One 7, e45466. doi:10.1371/journal.pone.0045466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Mabbott NA, Kenneth Baillie J, Hume DA, Freeman TC (2010) Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology 215:724–736

    Article  CAS  PubMed  Google Scholar 

  71. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A et al (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Malissen B, Tamoutounour S, Henri S (2014) The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 14:417–428

    Article  CAS  PubMed  Google Scholar 

  73. Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B, Kissenpfennig A, Barbaroux JB, Groves R, Geissmann F (2009) Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med 206:3089–3100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, Stanley ER, Randolph GJ, Merad M (2006) Langerhans cells arise from monocytes in vivo. Nat Immunol 7:265–273

    Article  CAS  PubMed  Google Scholar 

  75. Nagao K, Ginhoux F, Leitner WW, Motegi S, Bennett CL, Clausen BE, Merad M, Udey MC (2009) Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc Natl Acad Sci U S A 106:3312–3317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Shay T, Jojic V, Zuk O, Rothamel K, Puyraimond-Zemmour D, Feng T, Wakamatsu E, Benoist C, Koller D, Regev A et al (2013) Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc Natl Acad Sci U S A 110:2946–2951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Schroder K, Irvine KM, Taylor MS, Bokil NJ, Le Cao KA, Masterman KA, Labzin LI, Semple CA, Kapetanovic R, Fairbairn L et al (2012) Conservation and divergence in toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc Natl Acad Sci U S A 109:E944–E953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lonnerberg P, Linnarsson S (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author, Joachim Schultze, would like to thank Michael Pankratz for judging and reading the manuscript carefully. He is funded by the Deutsche Forschungsgemeinschaft (SFB645, SFB704). He is a member of the Excellence Cluster ImmunoSensation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim L. Schultze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schultze, J.L. Transcriptional programming of human macrophages: on the way to systems immunology. J Mol Med 93, 589–597 (2015). https://doi.org/10.1007/s00109-015-1286-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1286-y

Keywords

Navigation