Skip to main content

Advertisement

Log in

Diverse phenotypic consequences of mutations affecting the C-terminus of FLNA

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Filamin A, the filamentous protein encoded by the X-linked gene FLNA, cross-links cytoskeletal actin into three-dimensional networks, facilitating its role as a signalling scaffold and a mechanosensor of extrinsic shear forces. Central to these functions is the ability of FLNA to form V-shaped homodimers through its C-terminal located filamin repeat 24. Additionally, many proteins that interact with FLNA have a binding site that includes the C-terminus of the protein. Here, a cohort of patients with mutations affecting this region of the protein is studied, with particular emphasis on the phenotype of male hemizygotes. Seven unrelated families are reported, with five exhibiting a typical female presentation of periventricular heterotopia (PH), a neuronal migration disorder typically caused by loss-of-function mutations in FLNA. One male presents with widespread PH consistent with previous male phenotypes attributable to hypomorphic mutations in FLNA. In stark contrast, two brothers are described with a mild PH presentation, due to a missense mutation (p.Gly2593Glu) inserting a large negatively charged amino acid into the hydrophobic dimerisation interface of FLNA. Co-immunoprecipitation, in vitro cross-linking studies and gel filtration chromatography all demonstrated that homodimerisation of isolated FLNA repeat 24 is abolished by this p.Gly2593Glu substitution but that extended FLNAGly2593Glu repeat 16–24 constructs exhibit dimerisation. These observations imply that other interactions apart from those mediated by the canonical repeat 24 dimerisation interface contribute to FLNA homodimerisation and that mutations affecting this region of the protein can have broad phenotypic effects.

Key messages

• Mutations in the X-linked gene FLNA cause a spectrum of syndromes.

• Genotype-phenotype correlations are emerging but still remain unclear.

• C-term mutations can confer male lethality, survival or connective tissue defects.

• Mutations leading to the latter affect filamin dimerisation.

• This deficit is compensated for by remotely acting domains elsewhere in FLNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fox JW, Lamperti ED, Eksioglu YZ, Hong SE, Feng Y, Graham DA, Scheffer IE, Dobyns WB, Hirsch BA, Radtke RA et al (1998) Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21:1315–1325

    Article  CAS  PubMed  Google Scholar 

  2. Kyndt F, Gueffet JP, Probst V, Jaafar P, Legendre A, Le Bouffant F, Toquet C, Roy E, McGregor L, Lynch SA et al (2007) Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation 115:40–49

    Article  CAS  PubMed  Google Scholar 

  3. Robertson SP, Twigg SR, Sutherland-Smith AJ, Biancalana V, Gorlin RJ, Horn D, Kenwrick SJ, Kim CA, Morava E, Newbury-Ecob R et al (2003) Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat Genet 33:487–491

    Article  CAS  PubMed  Google Scholar 

  4. Sheen VL, Jansen A, Chen MH, Parrini E, Morgan T, Ravenscroft R, Ganesh V, Underwood T, Wiley J, Leventer R et al (2005) Filamin A mutations cause periventricular heterotopia with Ehlers-Danlos syndrome. Neurology 64:254–262

    Article  CAS  PubMed  Google Scholar 

  5. Sun Y, Almomani R, Aten E, Celli J, van der Heijden J, Venselaar H, Robertson SP, Baroncini A, Franco B, Basel-Vanagaite L et al (2010) Terminal osseous dysplasia is caused by a single recurrent mutation in the FLNA gene. Am J Hum Genet 87:146–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hartwig JH, Tyler J, Stossel TP (1980) Actin-binding protein promotes the bipolar and perpendicular branching of actin filaments. J Cell Biol 87:841–848

    Article  CAS  PubMed  Google Scholar 

  7. Gehler S, Baldassarre M, Lad Y, Leight JL, Wozniak MA, Riching KM, Eliceiri KW, Weaver VM, Calderwood DA, Keely PJ (2009) Filamin A-beta1 integrin complex tunes epithelial cell response to matrix tension. Mol Biol Cell 20:3224–3238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lynch CD, Gauthier NC, Biais N, Lazar AM, Roca-Cusachs P, Yu CH, Sheetz MP (2011) Filamin depletion blocks endoplasmic spreading and destabilizes force-bearing adhesions. Mol Biol Cell 22:1263–1273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Nakamura F, Stossel TP, Hartwig JH (2011) The filamins: organizers of cell structure and function. Cell Adhes Migr 5

  10. Fucini P, Renner C, Herberhold C, Noegel AA, Holak TA (1997) The repeating segments of the F-actin cross-linking gelation factor (ABP-120) have an immunoglobulin-like fold. Nat Struct Biol 4:223–230

    Article  CAS  PubMed  Google Scholar 

  11. Gorlin JB, Yamin R, Egan S, Stewart M, Stossel TP, Kwiatkowski DJ, Hartwig JH (1990) Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J Cell Biol 111:1089–1105

    Article  CAS  PubMed  Google Scholar 

  12. Gardel ML, Nakamura F, Hartwig JH, Crocker JC, Stossel TP, Weitz DA (2006) Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc Natl Acad Sci U S A 103:1762–1767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Himmel M, Van Der Ven PF, Stocklein W, Furst DO (2003) The limits of promiscuity: isoform-specific dimerization of filamins. Biochemistry 42:430–439

    Article  CAS  PubMed  Google Scholar 

  14. Weihing RR (1988) Actin-binding and dimerization domains of HeLa cell filamin. Biochemistry 27:1865–1869

    Article  CAS  PubMed  Google Scholar 

  15. Pudas R, Kiema TR, Butler PJ, Stewart M, Ylanne J (2005) Structural basis for vertebrate filamin dimerization. Structure 13:111–119

    Article  CAS  PubMed  Google Scholar 

  16. Kainulainen T, Pender A, D'Addario M, Feng Y, Lekic P, McCulloch CA (2002) Cell death and mechanoprotection by filamin a in connective tissues after challenge by applied tensile forces. J Biol Chem 277:21998–22009

    Article  CAS  PubMed  Google Scholar 

  17. Kasza KE, Nakamura F, Hu S, Kollmannsberger P, Bonakdar N, Fabry B, Stossel TP, Wang N, Weitz DA (2009) Filamin A is essential for active cell stiffening but not passive stiffening under external force. Biophys J 96:4326–4335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kesner BA, Ding F, Temple BR, Dokholyan NV (2010) N-terminal strands of filamin Ig domains act as a conformational switch under biological forces. Proteins 78:12–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Shifrin Y, Arora PD, Ohta Y, Calderwood DA, McCulloch CA (2009) The role of FilGAP-filamin A interactions in mechanoprotection. Mol Biol Cell 20:1269–1279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Nakamura F, Osborn TM, Hartemink CA, Hartwig JH, Stossel TP (2007) Structural basis of filamin A functions. J Cell Biol 179:1011–1025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Seo MD, Seok SH, Im H, Kwon AR, Lee SJ, Kim HR, Cho Y, Park D, Lee BJ (2009) Crystal structure of the dimerization domain of human filamin A. Proteins 75:258–263

    Article  CAS  PubMed  Google Scholar 

  22. Gargiulo A, Auricchio R, Barone MV, Cotugno G, Reardon W, Milla PJ, Ballabio A, Ciccodicola A, Auricchio A (2007) Filamin A is mutated in X-linked chronic idiopathic intestinal pseudo-obstruction with central nervous system involvement. Am J Hum Genet 80:751–758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Guerrini R, Mei D, Sisodiya S, Sicca F, Harding B, Takahashi Y, Dorn T, Yoshida A, Campistol J, Kramer G et al (2004) Germline and mosaic mutations of FLN1 in men with periventricular heterotopia. Neurology 63:51–56

    Article  CAS  PubMed  Google Scholar 

  24. Hehr U, Hehr A, Uyanik G, Phelan E, Winkler J, Reardon W (2006) A filamin A splice mutation resulting in a syndrome of facial dysmorphism, periventricular nodular heterotopia, and severe constipation reminiscent of cerebro-fronto-facial syndrome. J Med Genet 43:541–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Parrini E, Mei D, Wright M, Dorn T, Guerrini R (2004) Mosaic mutations of the FLN1 gene cause a mild phenotype in patients with periventricular heterotopia. Neurogenetics 5:191–196

    Article  CAS  PubMed  Google Scholar 

  26. Sheen VL, Dixon PH, Fox JW, Hong SE, Kinton L, Sisodiya SM, Duncan JS, Dubeau F, Scheffer IE, Schachter SC et al (2001) Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum Mol Genet 10:1775–1783

    Article  CAS  PubMed  Google Scholar 

  27. Fergelot P, Coupry I, Rooryck C, Deforges J, Maurat E, Sole G, Boute O, Dieux-Coeslier A, David A, Marchal C et al (2012) Atypical male and female presentations of FLNA-related periventricular nodular heterotopia. Eur J Med Genet 55:313–318

    Article  PubMed  Google Scholar 

  28. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  CAS  PubMed  Google Scholar 

  29. Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:25–30

    Article  PubMed  Google Scholar 

  30. Reinstein E, Frentz S, Morgan T, Garcia-Minaur S, Leventer RJ, McGillivray G, Pariani M, van der Steen A, Pope M, Holder-Espinasse M et al (2013) Vascular and connective tissue anomalies associated with X-linked periventricular heterotopia due to mutations in filamin A. Eur J Hum Genet 21:494–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cunningham CC, Gorlin JB, Kwiatkowski DJ, Hartwig JH, Janmey PA, Byers HR, Stossel TP (1992) Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255:325–327

    Article  CAS  PubMed  Google Scholar 

  32. Feng Y, Chen MH, Moskowitz IP, Mendonza AM, Vidali L, Nakamura F, Kwiatkowski DJ, Walsh CA (2006) Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci U S A 103:19836–19841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Sheen VL, Feng Y, Graham D, Takafuta T, Shapiro SS, Walsh CA (2002) Filamin A and filamin B are co-expressed within neurons during periods of neuronal migration and can physically interact. Hum Mol Genet 11:2845–2854

    Article  CAS  PubMed  Google Scholar 

  34. Ferland RJ, Batiz LF, Neal J, Lian G, Bundock E, Lu J, Hsiao YC, Diamond R, Mei D, Banham AH et al (2009) Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18:497–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Baldassarre M, Razinia Z, Burande CF, Lamsoul I, Lutz PG, Calderwood DA (2009) Filamins regulate cell spreading and initiation of cell migration. PLoS One 4:e7830

    Article  PubMed Central  PubMed  Google Scholar 

  36. Ylanne J, Scheffzek K, Young P, Saraste M (2001) Crystal structure of the alpha-actinin rod reveals an extensive torsional twist. Structure 9:597–604

    Article  CAS  PubMed  Google Scholar 

  37. Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145

    Article  CAS  PubMed  Google Scholar 

  38. Ohta Y, Hartwig JH, Stossel TP (2006) FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 8:803–814

    Article  CAS  PubMed  Google Scholar 

  39. Gay O, Gilquin B, Nakamura F, Jenkins ZA, McCartney R, Krakow D, Deshiere A, Assard N, Hartwig JH, Robertson SP et al (2011) RefilinB (FAM101B) targets filamin A to organize perinuclear actin networks and regulates nuclear shape. Proc Natl Acad Sci U S A 108:11464–11469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Nakamura F, Heikkinen O, Pentikainen OT, Osborn TM, Kasza KE, Weitz DA, Kupiainen O, Permi P, Kilpelainen I, Ylanne J et al (2009) Molecular basis of filamin A-FilGAP interaction and its impairment in congenital disorders associated with filamin A mutations. PLoS One 4:e4928

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the willing participation of the family described here. This work was supported by Curekids New Zealand (SR) and the Royal Society of New Zealand Marsden Fund (AJSS and SR).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Robertson.

Additional information

John Tolmie: In memoriam

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Kogelenberg, M., Clark, A.R., Jenkins, Z. et al. Diverse phenotypic consequences of mutations affecting the C-terminus of FLNA. J Mol Med 93, 773–782 (2015). https://doi.org/10.1007/s00109-015-1261-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1261-7

Keywords

Navigation