Skip to main content

Advertisement

Log in

DLEC1, a 3p tumor suppressor, represses NF-κB signaling and is methylated in prostate cancer

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Deleted in lung and esophageal cancer 1 (DLEC1), located at 3p22-p21.3, is involved in the carcinogenesis of multiple cancers, but its role in prostate cancer (PrCa) remains unclear. Here, we studied the epigenetic alteration of DLEC1 and its functions in prostate cancer. We found that DLEC1 was highly expressed in normal prostate tissues, normal prostatic epithelium cell line (RWPE-1), and benign prostatic hyperplasia cell line (BPH-1), but frequently downregulated by promoter methylation in PrCa cell lines. Pharmacologic demethylation could restore DLEC1 expression. DLEC1 was downregulated in prostate tumor tissues compared with their adjacent non-malignant tissues. DLEC1 was methylated in 76/110 primary tumors, but rarely in benign prostatic hyperplasia tissues. DLEC1 methylation was associated with higher PSA levels (p = 0.016), higher Gleason scores (p = 0.015), and more advanced tumor stages (p = 0.003). Furthermore, DLEC1 methylation was detected in 11/30 urine sediment samples from PrCa patients, but seldom in ones from BPH patients. Ectopic expression of DLEC1 inhibited the colony formation of PrCa cells, through inducing cell apoptosis. DLEC1 also suppressed PrCa cell migration. Moreover, DLEC1 inhibited NF-κB transcription activity in PrCa and HEK293 cells. Taken together, our data demonstrate that DLEC1 functions as a tumor suppressor but is frequently methylated in prostate cancer. DLEC1 methylation is associated with prostate cancer progression, which could be a non-invasive epigenetic biomarker for PrCa diagnosis.

Key messages

• Promoter methylation of DLEC1 is a potential prognostic biomarker for PrCa.

• DLEC1, a functional tumor suppressor, is frequently methylated in PrCa.

• DLEC1 suppresses prostate cancer growth and metastatic behavior.

• DLEC1 mediates tumor-suppressive activities through NF-κB signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Aza:

5-Aza-2-deoxycytidine

ATCC:

The American Type Culture Collection

BGS:

Bisulfite genomic sequence

BPH:

Benign prostatic hyperplasia

DLEC1:

Deleted in lung and esophageal cancer

DRE:

Digital rectal examination

FBS:

Fetal bovine serum

IHC:

Immunohistochemistry

MSP:

Methylation specific polymerase chain reaction

PrCa:

Prostate cancer

RT-PCR:

Reverse-transcription polymerase chain reaction

RP:

Radical prostatectomy

TSA:

Trichostatin A

TSG:

Tumor suppressor gene

TUR:

Transurethral resection

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N et al (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44:685–689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Mahapatra S, Klee EW, Young CY, Sun Z, Jimenez RE, Klee GG, Tindall DJ, Donkena KV (2012) Global methylation profiling for risk prediction of prostate cancer. Clin Cancer Res 18:2882–2895

    Article  CAS  PubMed  Google Scholar 

  4. Hoque MO (2009) DNA methylation changes in prostate cancer: current developments and future clinical implementation. Expert Rev Mol Diagn 9:243–257

    Article  CAS  PubMed  Google Scholar 

  5. Henrique R, Jeronimo C (2004) Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur Urol 46:660–669

    Article  CAS  PubMed  Google Scholar 

  6. Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ, Henrique R, Nelson WG, Shariat SF (2011) Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 60:753–766

    Article  CAS  PubMed  Google Scholar 

  7. Kuzmin I, Gillespie JW, Protopopov A, Geil L, Dreijerink K, Yang Y, Vocke CD, Duh FM, Zabarovsky E, Minna JD et al (2002) The RASSF1A tumor suppressor gene is inactivated in prostate tumors and suppresses growth of prostate carcinoma cells. Cancer Res 62:3498–3502

    CAS  PubMed  Google Scholar 

  8. Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL, Clark SJ (1999) Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene 18:1313–1324

    Article  CAS  PubMed  Google Scholar 

  9. Tian J, Lee SO, Liang L, Luo J, Huang CK, Li L, Niu Y, Chang C (2012) Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-aza-2′-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis. J Biol Chem 287:39954–39966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB, Nelson WG (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64:1975–1986

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Liu L, Pfeifer GP (2004) Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoic acid receptor beta gene. Oncogene 23:2241–2249

    Article  CAS  PubMed  Google Scholar 

  12. Enokida H, Shiina H, Urakami S, Igawa M, Ogishima T, Pookot D, Li LC, Tabatabai ZL, Kawahara M, Nakagawa M et al (2005) Ethnic group-related differences in CpG hypermethylation of the GSTP1 gene promoter among African-American, Caucasian and Asian patients with prostate cancer. Int J Cancer 116:174–181

    Article  CAS  PubMed  Google Scholar 

  13. Hesson LB, Cooper WN, Latif F (2007) Evaluation of the 3p21.3 tumour-suppressor gene cluster. Oncogene 26:7283–7301

    Article  CAS  PubMed  Google Scholar 

  14. Daigo Y, Nishiwaki T, Kawasoe T, Tamari M, Tsuchiya E, Nakamura Y (1999) Molecular cloning of a candidate tumor suppressor gene, DLC1, from chromosome 3p21.3. Cancer Res 59:1966–1972

    CAS  PubMed  Google Scholar 

  15. Kwong J, Lee JY, Wong KK, Zhou X, Wong DT, Lo KW, Welch WR, Berkowitz RS, Mok SC (2006) Candidate tumor-suppressor gene DLEC1 is frequently downregulated by promoter hypermethylation and histone hypoacetylation in human epithelial ovarian cancer. Neoplasia 8:268–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Qiu GH, Salto-Tellez M, Ross JA, Yeo W, Cui Y, Wheelhouse N, Chen GG, Harrison D, Lai P et al (2008) The tumor suppressor gene DLEC1 is frequently silenced by DNA methylation in hepatocellular carcinoma and induces G1 arrest in cell cycle. J Hepatol 48:433–44117

    Article  CAS  PubMed  Google Scholar 

  17. Ying J, Poon FF, Yu J, Geng H, Wong AH, Qiu GH, Goh HK, Rha SY, Tian L, Chan AT et al (2009) DLEC1 is a functional 3p22.3 tumour suppressor silenced by promoter CpG methylation in colon and gastric cancers. Brit J Cancer 100:663–669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zhang Q, Ying J, Li J, Fan Y, Poon FF, Ng KM, Tao Q, Jin J (2010) Aberrant promoter methylation of DLEC1, a critical 3p22 tumor suppressor for renal cell carcinoma, is associated with more advanced tumor stage. J Urol 184:731–737

    Article  CAS  PubMed  Google Scholar 

  19. Al Sarakbi W, Reefy S, Jiang WG, Roberts T, Newbold RF, Mokbel K (2010) Evidence of a tumour suppressor function for DLEC1 in human breast cancer. Anticancer Res 30:1079–1082

    CAS  PubMed  Google Scholar 

  20. Seng TJ, Currey N, Cooper WA, Lee CS, Chan C, Horvath L, Sutherland RL, Kennedy C, McCaughan B, Kohonen-Corish MR (2008) DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. Brit J Cancer 99:375–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jin H, Wang X, Ying J, Wong AH, Cui Y, Srivastava G, Shen ZY, Li EM, Zhang Q, Jin J et al (2007) Epigenetic silencing of a Ca(2+)-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers. Proc Natl Acad Sci U S A 104:12353–12358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Tao Q, Robertson KD, Manns A, Hildesheim A, Ambinder RF (1998) The Epstein-Barr virus major latent promoter Qp is constitutively active, hypomethylated, and methylation sensitive. J Virol 72:7075–7083

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Tao Q, Swinnen LJ, Yang J, Srivastava G, Robertson KD, Ambinder RF (1999) Methylation status of the Epstein-Barr virus major latent promoter C in iatrogenic B cell lymphoproliferative disease. Application of PCR-based analysis. Am J Pathol 155:619–625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hessels D, Klein Gunnewiek JM, van Oort I, Karthaus HF, van Leenders GJ, van Balken B, Kiemeney LA, Witjes JA, Schalken JA (2003) DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 44:8–15

    Article  CAS  PubMed  Google Scholar 

  25. Baylin SB (2012) The cancer epigenome: its origins, contributions to tumorigenesis, and translational implications. Proc Am Thorac Soc 9:64–65

    Article  PubMed Central  PubMed  Google Scholar 

  26. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ahmed H (2010) Promoter Methylation in prostate cancer and its application for the early detection of prostate cancer using serum and urine samples. Biomarker Cancer 2010:17–33

    Article  Google Scholar 

  28. Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C, Sanchez-Cespedes M, Chow NH, Grasso M, Wu L, Westra WB et al (2001) Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 7:2727–2730

    CAS  PubMed  Google Scholar 

  29. Truong M, Yang B, Jarrard DF (2013) Toward the detection of prostate cancer in urine: a critical analysis. J Urol 189:422–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Gyparaki MT, Basdra EK, Papavassiliou AG (2013) DNA methylation biomarkers as diagnostic and prognostic tools in colorectal cancer. J Mol Med 91:1249–1256

    Article  CAS  PubMed  Google Scholar 

  31. Garg R, Blando J, Perez CJ, Wang H, Benavides FJ, Kazanietz MG (2012) Activation of nuclear factor kappaB (NF-kappaB) in prostate cancer is mediated by protein kinase C epsilon (PKCepsilon). J Biol Chem 287:37570–37582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. McCall P, Bennett L, Ahmad I, Mackenzie LM, Forbes IW, Leung HY, Sansom OJ, Orange C, Seywright M, Underwood MA et al (2012) NFkappaB signalling is upregulated in a subset of castrate-resistant prostate cancer patients and correlates with disease progression. Br J Cancer 107:1554–1563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Nguyen DP, Li J, Yadav SS, Tewari AK (2014) Recent insights into NF-kappaB signalling pathways and the link between inflammation and prostate cancer. BJU Int 114:168–176

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK, Korets R, Wenske S, Lilja HG, Chang C et al (2009) NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol 175:489–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation (No. 81272290, 81171971, 81372898 and 81101492), Beijing Municipal Science and Technology Commission (No.Z131107002213130 and Z121107002512012), Central Health Care Research Foundation (No. W2013BJ28), Shenzhen city (GJHS20120702105523309), and China 973 Program (2012CB518305).

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Tao or Jie Jin.

Additional information

Lian Zhang and Qian Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, Q., Li, L. et al. DLEC1, a 3p tumor suppressor, represses NF-κB signaling and is methylated in prostate cancer. J Mol Med 93, 691–701 (2015). https://doi.org/10.1007/s00109-015-1255-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1255-5

Keywords

Navigation