Skip to main content
Log in

Inhibition of protein tyrosine phosphatases enhances cerebral collateral growth in rats

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Arteriogenesis involves the rapid proliferation of preexisting arterioles to fully functional arteries as a compensatory mechanism to overcome circulatory deficits. Stimulation of arteriogenesis has therefore been considered a treatment concept in arterial occlusive disease. Here, we investigated the impact of inhibition of protein tyrosine phosphatases (PTPs) on cerebral arteriogenesis in rats. Arteriogenesis was induced by occlusion of one carotid and both vertebral arteries (three-vessel occlusion (3-VO)). Collateral growth and functional vessel perfusion was assessed 3–35 days following 3-VO. Furthermore, animals underwent 3-VO surgery and were treated with the pan-PTP inhibitor BMOV, the SHP-1 inhibitor sodium stibogluconate (SSG), or the PTP1B inhibitor AS279. Cerebral vessel diameters and cerebrovascular reserve capacity (CVRC) were determined, together with immunohistochemistry analyses and proximity ligation assays (PLA) for determination of tissue proliferation and phosphorylation patterns after 7 days. The most significant changes in vessel diameter increase were present in the ipsilateral posterior cerebral artery (PCA), with proliferative markers (PCNA) being time-dependently increased. The CVRC was lost in the early phase after 3-VO and partially recovered after 21 days. PTP inhibition resulted in a significant increase in the ipsilateral PCA diameter in BMOV-treated animals and rats subjected to PTP1B inhibition. Furthermore, CVRC was significantly elevated in AS279-treated rats compared to control animals, along with hyperphosphorylation of the platelet-derived growth factor-β receptor in the vascular wall in vivo. In summary, our data indicate PTPs as hitherto unrecognized negative regulators in cerebral arteriogenesis. Further, PTP inhibition leading to enhanced collateral growth and blood perfusion suggests PTPs as novel targets in anti-ischemic treatment.

Key Messages

  • PTPs exhibit negative regulatory function in cerebral collateral growth in rats.

  • Inhibition of pan-PTP/PTP1B increases vessel PDGF-β receptor phosphorylation.

  • PTP1B inhibition enhances arteriogenesis and cerebrovascular reserve capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cai W, Schaper W (2008) Mechanisms of arteriogenesis. Acta Biochim Biophys Sin (Shanghai) 40:681–692

    CAS  Google Scholar 

  2. Fung E, Helisch A (2012) Macrophages in collateral arteriogenesis. Front Physiol 3:353

    Article  PubMed Central  PubMed  Google Scholar 

  3. Meisner JK, Price RJ (2010) Spatial and temporal coordination of bone marrow-derived cell activity during arteriogenesis: regulation of the endogenous response and therapeutic implications. Microcirculation 17:583–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Dromparis P, Sutendra G, Paulin R, Proctor S, Michelakis ED, McMurtry MS (2014) Pioglitazone inhibits HIF-1 alpha-dependent angiogenesis in rats by paracrine and direct effects on endothelial cells. J Mol Med (Berl)

  5. Waltenberger J (2007) Stress testing at the cellular and molecular level to unravel cellular dysfunction and growth factor signal transduction defects: what molecular cell biology can learn from cardiology. Thromb Haemost 98:975–979

    CAS  PubMed  Google Scholar 

  6. Toyota E, Warltier DC, Brock T, Ritman E, Kolz C, O'Malley P, Rocic P, Focardi M, Chilian WM (2005) Vascular endothelial growth factor is required for coronary collateral growth in the rat. Circulation 112:2108–2113

    Article  CAS  PubMed  Google Scholar 

  7. Bohmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J (2013) Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. FEBS J 280:413–431

    Article  PubMed  Google Scholar 

  8. Kappert K, Peters KG, Bohmer FD, Ostman A (2005) Tyrosine phosphatases in vessel wall signaling. Cardiovasc Res 65:587–598

    Article  CAS  PubMed  Google Scholar 

  9. Nakayama K, Takahashi K, Shultz LD, Miyakawa K, Tomita K (1997) Abnormal development and differentiation of macrophages and dendritic cells in viable motheaten mutant mice deficient in haematopoietic cell phosphatase. Int J Exp Pathol 78:245–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Buschmann IR, Busch HJ, Mies G, Hossmann KA (2003) Therapeutic induction of arteriogenesis in hypoperfused rat brain via granulocyte-macrophage colony-stimulating factor. Circulation 108:610–615

    Article  CAS  PubMed  Google Scholar 

  11. Chu LY, Ramakrishnan DP, Silverstein RL (2013) Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells. Blood

  12. Yu Z, Su L, Hoglinger O, Jaramillo ML, Banville D, Shen SH (1998) SHP-1 associates with both platelet-derived growth factor receptor and the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 273:3687–3694

    Article  CAS  PubMed  Google Scholar 

  13. Kim CH, Qu CK, Hangoc G, Cooper S, Anzai N, Feng GS, Broxmeyer HE (1999) Abnormal chemokine-induced responses of immature and mature hematopoietic cells from motheaten mice implicate the protein tyrosine phosphatase SHP-1 in chemokine responses. J Exp Med 190:681–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Barr AJ (2010) Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Futur Med Chem 2:1563–1576

    Article  CAS  Google Scholar 

  15. Chang Y, Ceacareanu B, Zhuang D, Zhang C, Pu Q, Ceacareanu AC, Hassid A (2006) Counter-regulatory function of protein tyrosine phosphatase 1B in platelet-derived growth factor- or fibroblast growth factor-induced motility and proliferation of cultured smooth muscle cells and in neointima formation. Arterioscler Thromb Vasc Biol 26:501–507

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura Y, Patrushev N, Inomata H, Mehta D, Urao N, Kim HW, Razvi M, Kini V, Mahadev K, Goldstein BJ et al (2008) Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in endothelial cells. Circ Res 102:1182–1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kruger J, Trappiel M, Dagnell M, Stawowy P, Meyborg H, Bohm C, Bhanot S, Ostman A, Kintscher U, Kappert K (2013) Targeting density-enhanced phosphatase-1 (DEP-1) with antisense oligonucleotides improves the metabolic phenotype in high-fat diet-fed mice. Cell Commun Signal CCS 11:49

    Article  Google Scholar 

  18. Ostergaard L, Jespersen SN, Mouridsen K, Mikkelsen IK, Jonsdottir KY, Tietze A, Blicher JU, Aamand R, Hjort N, Iversen NK et al (2013) The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood Flow Metab 33:635–648

    Article  PubMed Central  PubMed  Google Scholar 

  19. Scior T, Mack HG, Garcia JA, Koch W (2009) Antidiabetic Bis-Maltolato-OxoVanadium(IV): conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B. Drug Des Devel Ther 2:221–231

    PubMed Central  PubMed  Google Scholar 

  20. Pathak MK, Yi T (2001) Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. J Immunol 167:3391–3397

    Article  CAS  PubMed  Google Scholar 

  21. Gomez E, Vercauteren M, Kurtz B, Ouvrard-Pascaud A, Mulder P, Henry JP, Besnier M, Waget A, Hooft Van Huijsduijnen R, Tremblay ML et al (2012) Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B. J Mol Cell Cardiol 52:1257–1264

    Article  CAS  PubMed  Google Scholar 

  22. Vercauteren M, Remy E, Devaux C, Dautreaux B, Henry JP, Bauer F, Mulder P, Hooft van Huijsduijnen R, Bombrun A, Thuillez C et al (2006) Improvement of peripheral endothelial dysfunction by protein tyrosine phosphatase inhibitors in heart failure. Circulation 114:2498–2507

    Article  CAS  PubMed  Google Scholar 

  23. Claesson-Welsh L, Welsh M (2013) VEGFA and tumour angiogenesis. J Intern Med 273:114–127

    Article  CAS  PubMed  Google Scholar 

  24. Chen JX, Tuo Q, Liao DF, Zeng H (2012) Inhibition of protein tyrosine phosphatase improves angiogenesis via enhancing Ang-1/Tie-2 signaling in diabetes. Exp Diabetes Res 2012:836759

    PubMed Central  PubMed  Google Scholar 

  25. Winter CL, Lange JS, Davis MG, Gerwe GS, Downs TR, Peters KG, Kasibhatla B (2005) A nonspecific phosphotyrosine phosphatase inhibitor, bis(maltolato)oxovanadium(IV), improves glucose tolerance and prevents diabetes in Zucker diabetic fatty rats. Exp Biol Med (Maywood) 230:207–216

    CAS  Google Scholar 

  26. Carr AN, Davis MG, Eby-Wilkens E, Howard BW, Towne BA, Dufresne TE, Peters KG (2004) Tyrosine phosphatase inhibition augments collateral blood flow in a rat model of peripheral vascular disease. Am J Physiol Heart Circ Physiol 287:H268–H276

    CAS  PubMed  Google Scholar 

  27. Peters KG, Davis MG, Howard BW, Pokross M, Rastogi V, Diven C, Greis KD, Eby-Wilkens E, Maier M, Evdokimov A et al (2003) Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (VO4) as the active component. J Inorg Biochem 96:321–330

    Article  CAS  PubMed  Google Scholar 

  28. Dance M, Montagner A, Salles JP, Yart A, Raynal P (2008) The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal 20:453–459

    Article  CAS  PubMed  Google Scholar 

  29. Hackbusch D, Dulsner A, Gatzke N, Kruger J, Hillmeister P, Nagorka S, Blaschke F, Ritter Z, Thone-Reineke C, Bohmer FD et al (2013) Knockout of density-enhanced phosphatase-1 impairs cerebrovascular reserve capacity in an arteriogenesis model in mice. Biomed Res Int 2013:802149

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kappert K, Paulsson J, Sparwel J, Leppanen O, Hellberg C, Ostman A, Micke P (2007) Dynamic changes in the expression of DEP-1 and other PDGF receptor-antagonizing PTPs during onset and termination of neointima formation. FASEB J 21:523–534

    Article  CAS  PubMed  Google Scholar 

  31. ten Freyhaus H, Dagnell M, Leuchs M, Vantler M, Berghausen EM, Caglayan E, Weissmann N, Dahal BK, Schermuly RT, Ostman A et al (2011) Hypoxia enhances platelet-derived growth factor signaling in the pulmonary vasculature by down-regulation of protein tyrosine phosphatases. Am J Respir Crit Care Med 183:1092–1102

    PubMed  Google Scholar 

  32. Tallquist M, Kazlauskas A (2004) PDGF signaling in cells and mice. Cytokine Growth Factor Rev 15:205–213

    Article  CAS  PubMed  Google Scholar 

  33. Caglayan E, Vantler M, Leppanen O, Gerhardt F, Mustafov L, Ten Freyhaus H, Kappert K, Odenthal M, Zimmermann WH, Tallquist MD et al (2011) Disruption of platelet-derived growth factor-dependent phosphatidylinositol 3-kinase and phospholipase Cgamma 1 activity abolishes vascular smooth muscle cell proliferation and migration and attenuates neointima formation in vivo. J Am Coll Cardiol 57:2527–2538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Klinghoffer RA, Kazlauskas A (1995) Identification of a putative Syp substrate, the PDGF beta receptor. J Biol Chem 270:22208–22217

    Article  CAS  PubMed  Google Scholar 

  35. Chiong M, Morales P, Torres G, Gutierrez T, Garcia L, Ibacache M, Michea L (2013) Influence of glucose metabolism on vascular smooth muscle cell proliferation. VASA Zeitschrift fur Gefasskrankheiten 42:8–16

    Article  PubMed  Google Scholar 

  36. Lyons BL, Smith RS, Hurd RE, Hawes NL, Burzenski LM, Nusinowitz S, Hasham MG, Chang B, Shultz LD (2006) Deficiency of SHP-1 protein-tyrosine phosphatase in “viable motheaten” mice results in retinal degeneration. Invest Ophthalmol Vis Sci 47:1201–1209

    Article  PubMed  Google Scholar 

  37. Sen G, Mandal S, Roy SS, Mukhopadhyay S, Biswas T (2005) Therapeutic use of quercetin in the control of infection and anemia associated with visceral leishmaniasis. Free Radic Biol Med 38:1257–1264

    Article  CAS  PubMed  Google Scholar 

  38. Koch E, Pircher J, Czermak T, Gaitzsch E, Alig S, Mannell H, Niemeyer M, Krotz F, Wornle M (2013) The endothelial tyrosine phosphatase SHP-1 plays an important role for vascular haemostasis in TNF alpha-induced inflammation in vivo. Mediat Inflamm 2013:279781

    Google Scholar 

Download references

Acknowledgments

KK was supported by the Deutsche Forschungsgemeinschaft (DFG) (KA1820/4-1), the Charité-University Medicine Berlin, and receives funding from the Marga und Walter Boll-Stiftung (210-04-10). IB was supported by the Deutsche Forschungsgemeinschaft (BU1151/6-1). This work was supported by a grant of the Japanese Society for the Promotions of Science (JSPS) to DH (PE11501). Studies were supported by grants to AÖ from Swedish Research Council.

Disclosure

RH was employed by Merck Serono International S.A., Geneva, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Kappert.

Additional information

Ivo Buschmann, Daniel Hackbusch, and Nora Gatzke contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buschmann, I., Hackbusch, D., Gatzke, N. et al. Inhibition of protein tyrosine phosphatases enhances cerebral collateral growth in rats. J Mol Med 92, 983–994 (2014). https://doi.org/10.1007/s00109-014-1164-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1164-z

Keywords

Navigation