Journal of Molecular Medicine

, Volume 92, Issue 6, pp 571–581 | Cite as

ZNF281/ZBP-99: a new player in epithelial–mesenchymal transition, stemness, and cancer

  • Stefanie Hahn
  • Heiko Hermeking


Epithelial–mesenchymal transition (EMT) represents an important mechanism during development and wound healing, and its deregulation has been implicated in metastasis. Recently, the Krüppel-type zinc-finger transcription factor ZNF281 has been characterized as an EMT-inducing transcription factor (EMT-TF). Expression of ZNF281 is induced by the EMT-TF SNAIL and inhibited by the tumor suppressive microRNA miR-34a, which mediates repression of ZNF281 by the p53 tumor suppressor. Therefore, SNAIL, miR-34a and ZNF281 form a feed-forward regulatory loop, which controls EMT. Deregulation of this circuitry by mutational and epigenetic alterations in the p53/miR-34a axis promotes colorectal cancer (CRC) progression and metastasis formation. As ZNF281 physically interacts with the transcription factors NANOG, OCT4, SOX2, and c-MYC, it has been implicated in the regulation of pluripotency, stemness, and cancer. Accordingly, ectopic ZNF281 expression in CRC lines induces the stemness markers LGR5 and CD133 and promotes sphere formation, suggesting that the elevated expression of ZNF281 detected in cancer may enhance tumor stem cell formation and/or function. Here, we review the functional and organismal studies of ZNF281/ZBP-99 and its close relative ZBP-89/ZFP148 reported so far. Taken together, ZNF281 related biology has the potential to be translated into cancer diagnostic, prognostic, and therapeutic approaches.


Cancer EMT Metastasis miR-34a Stemness ZNF281/ZBP-99 


  1. 1.
    Lisowsky T, Polosa PL, Sagliano A, Roberti M, Gadaleta MN, Cantatore P (1999) Identification of human GC-box-binding zinc finger protein, a new Kruppel-like zinc finger protein, by the yeast one-hybrid screening with a GC-rich target sequence. FEBS Lett 453:369–374PubMedCrossRefGoogle Scholar
  2. 2.
    Law DJ, Du M, Law GL, Merchant JL (1999) ZBP-99 defines a conserved family of transcription factors and regulates ornithine decarboxylase gene expression. Biochem Biophys Res Commun 262:113–120PubMedCrossRefGoogle Scholar
  3. 3.
    Wang ZX, Teh CH, Chan CM, Chu C, Rossbach M, Kunarso G, Allapitchay TB, Wong KY, Stanton LW (2008) The transcription factor Zfp281 controls embryonic stem cell pluripotency by direct activation and repression of target genes. Stem Cells 26:2791–2799PubMedCrossRefGoogle Scholar
  4. 4.
    Polman JA, Welten JE, Bosch DS, de Jonge RT, Balog J, van der Maarel SM, de Kloet ER, Datson NA (2012) A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. BMC Neurosci 13:118PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bai L, Merchant JL (2001) ZBP-89 promotes growth arrest through stabilization of p53. Mol Cell Biol 21:4670–4683PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Bai L, Yoon SO, King PD, Merchant JL (2004) ZBP-89-induced apoptosis is p53-independent and requires JNK. Cell Death Differ 11:663–673PubMedGoogle Scholar
  7. 7.
    Li X, Xiong JW, Shelley CS, Park H, Arnaout MA (2006) The transcription factor ZBP-89 controls generation of the hematopoietic lineage in zebrafish and mouse embryonic stem cells. Development 133:3641–3650PubMedCrossRefGoogle Scholar
  8. 8.
    Law DJ, Labut EM, Merchant JL (2006) Intestinal overexpression of ZNF148 suppresses ApcMin/+neoplasia. Mamm Genome 17:999–1004PubMedCrossRefGoogle Scholar
  9. 9.
    Griffin JB, Rodriguez-Melendez R, Zempleni J (2003) The nuclear abundance of transcription factors Sp1 and Sp3 depends on biotin in Jurkat cells. J Nutr 133:3409–3415PubMedGoogle Scholar
  10. 10.
    Nagaoka M, Shiraishi Y, Sugiura Y (2001) Selected base sequence outside the target binding site of zinc finger protein Sp1. Nucleic Acids Res 29:4920–4929PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Black AR, Black JD, Azizkhan-Clifford J (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188:143–160PubMedCrossRefGoogle Scholar
  12. 12.
    Scharer CD, McCabe CD, Ali-Seyed M, Berger MF, Bulyk ML, Moreno CS (2009) Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res 69:709–717PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, Meyer-Schaller N, Schubeler D, van Nimwegen E, Christofori G (2013) Sox4 is a master regulator of epithelial–mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell 23:768–783PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X, Feng J, Zhang Y, Gao H, Liu DX et al (2012) SOX4 induces epithelial–mesenchymal transition and contributes to breast cancer progression. Cancer Res 72:4597–4608PubMedCrossRefGoogle Scholar
  15. 15.
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166PubMedCrossRefGoogle Scholar
  16. 16.
    Bai L, Kao JY, Law DJ, Merchant JL (2006) Recruitment of ataxia-telangiectasia mutated to the p21(waf1) promoter by ZBP-89 plays a role in mucosal protection. Gastroenterology 131:841–852PubMedCrossRefGoogle Scholar
  17. 17.
    Bai L, Merchant JL (2007) ATM phosphorylates ZBP-89 at Ser202 to potentiate p21waf1 induction by butyrate. Biochem Biophys Res Commun 359:817–821PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Fidalgo M, Shekar PC, Ang YS, Fujiwara Y, Orkin SH, Wang J (2011) Zfp281 functions as a transcriptional repressor for pluripotency of mouse embryonic stem cells. Stem Cells 29:1705–1716PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Takeuchi A, Mishina Y, Miyaishi O, Kojima E, Hasegawa T, Isobe K (2003) Heterozygosity with respect to Zfp148 causes complete loss of fetal germ cells during mouse embryogenesis. Nat Genet 33:172–176PubMedCrossRefGoogle Scholar
  20. 20.
    Law DJ, Labut EM, Adams RD, Merchant JL (2006) An isoform of ZBP-89 predisposes the colon to colitis. Nucleic Acids Res 34:1342–1350PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Essien BE, Grasberger H, Romain RD, Law DJ, Veniaminova NA, Saqui-Salces M, El-Zaatari M, Tessier A, Hayes MM, Yang AC et al (2013) ZBP-89 regulates expression of tryptophan hydroxylase I and mucosal defense against Salmonella typhimurium in mice. Gastroenterology 144:1466–1477, 1477 e1461-1469PubMedCrossRefGoogle Scholar
  22. 22.
    Sayin VI, Nilton A, Ibrahim MX, Agren P, Larsson E, Petit MM, Hulten LM, Stahlman M, Johansson BR, Bergo MO et al (2013) Zfp148 deficiency causes lung maturation defects and lethality in newborn mice that are rescued by deletion of p53 or antioxidant treatment. PLoS One 8:e55720PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Carver EA, Jiang R, Lan Y, Oram KF, Gridley T (2001) The mouse snail gene encodes a key regulator of the epithelial–mesenchymal transition. Mol Cell Biol 21:8184–8188PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Murray SA, Carver EA, Gridley T (2006) Generation of a Snail1 (Snai1) conditional null allele. Genesis 44:7–11PubMedCrossRefGoogle Scholar
  25. 25.
    De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13:97–110PubMedCrossRefGoogle Scholar
  26. 26.
    Kalluri R, Weinberg RA (2009) The basics of epithelial–mesenchymal transition. J Clin Invest 119:1420–1428PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Yang J, Weinberg RA (2008) Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829PubMedCrossRefGoogle Scholar
  28. 28.
    Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383PubMedCrossRefGoogle Scholar
  29. 29.
    Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172:973–981PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273PubMedCrossRefGoogle Scholar
  31. 31.
    Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454PubMedCrossRefGoogle Scholar
  32. 32.
    Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142PubMedCrossRefGoogle Scholar
  33. 33.
    Boyer B, Thiery JP (1993) Epithelium–mesenchyme interconversion as example of epithelial plasticity. APMIS 101:257–268PubMedCrossRefGoogle Scholar
  34. 34.
    Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428PubMedCrossRefGoogle Scholar
  35. 35.
    Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW et al (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A 107:15449–15454PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Sanchez-Tillo E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A (2012) EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 69:3429–3456PubMedCrossRefGoogle Scholar
  37. 37.
    Zeisberg M, Neilson EG (2009) Biomarkers for epithelial–mesenchymal transitions. J Clin Invest 119:1429–1437PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284PubMedCrossRefGoogle Scholar
  39. 39.
    Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Brabletz T (2012) MiR-34 and SNAIL: another double-negative feedback loop controlling cellular plasticity/EMT governed by p53. Cell Cycle 11:215–216PubMedCrossRefGoogle Scholar
  41. 41.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269PubMedCrossRefGoogle Scholar
  42. 42.
    Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613–626PubMedCrossRefGoogle Scholar
  43. 43.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110PubMedCrossRefGoogle Scholar
  46. 46.
    Hahn S, Jackstadt R, Siemens H, Hunten S, Hermeking H (2013) SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial–mesenchymal transition. EMBO J 32:3079–3095PubMedCrossRefGoogle Scholar
  47. 47.
    Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S et al (2014) IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest 124:1853–1867PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Cheng CY, Hwang CI, Corney DC, Flesken-Nikitin A, Jiang L, Oner GM, Munroe RJ, Schimenti JC, Hermeking H, Nikitin AY (2014) miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep 6:1000–1007PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Okada N, Lin CP, Ribeiro MC, Biton A, Lai G, He X, Bu P, Vogel H, Jablons DM, Keller AC et al (2014) A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 28:438–450PubMedCrossRefGoogle Scholar
  50. 50.
    Siemens H, Jackstadt R, Hunten S, Kaller M, Menssen A, Gotz U, Hermeking H (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial–mesenchymal transitions. Cell Cycle 10:4256–4271PubMedCrossRefGoogle Scholar
  51. 51.
    Koch HB, Zhang R, Verdoodt B, Bailey A, Zhang CD, Yates JR 3rd, Menssen A, Hermeking H (2007) Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach. Cell Cycle 6:205–217PubMedCrossRefGoogle Scholar
  52. 52.
    Seo KW, Roh KH, Bhandari DR, Park SB, Lee SK, Kang KS (2013) ZNF281 knockdown induced osteogenic differentiation of human multipotent stem cells in vivo and in vitro. Cell Transplant 22:29–40Google Scholar
  53. 53.
    Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24:306–319Google Scholar
  54. 54.
    Shi L, Jackstadt R, Siemens H, Li H, Kirchner T, Hermeking H (2014) p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial–mesenchymal transition and metastasis in colorectal cancer. Cancer Res 74:532–542PubMedCrossRefGoogle Scholar
  55. 55.
    Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin SH (2006) A protein interaction network for pluripotency of embryonic stem cells. Nature 444:364–368PubMedCrossRefGoogle Scholar
  56. 56.
    Fidalgo M, Faiola F, Pereira CF, Ding J, Saunders A, Gingold J, Schaniel C, Lemischka IR, Silva JC, Wang J (2012) Zfp281 mediates NANOG autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming. Proc Natl Acad Sci U S A, pp. 16202–16207Google Scholar
  57. 57.
    Wang D, Manali D, Wang T, Bhat N, Hong N, Li Z, Wang L, Yan Y, Liu R, Hong Y (2011) Identification of pluripotency genes in the fish medaka. Int J Biol Sci 7:440–451PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, Goerger JP, Sun J, Witherspoon M, Rakhilin N et al (2013) A microRNA miR-34a-regulated bimodal switch targets notch in colon cancer stem cells. Cell Stem Cell 12:602–615PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452:225–229PubMedCrossRefGoogle Scholar
  60. 60.
    Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495PubMedCrossRefGoogle Scholar
  61. 61.
    Taube JH, Malouf GG, Lu E, Sphyris N, Vijay V, Ramachandran PP, Ueno KR, Gaur S, Nicoloso MS, Rossi S et al (2013) Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Sci Rep 3:2687PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Moes M, Le Bechec A, Crespo I, Laurini C, Halavatyi A, Vetter G, Del Sol A, Friederich E (2012) A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PLoS One 7:e35440PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M et al (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Pinto D, Clevers H (2005) Wnt, stem cells and cancer in the intestine. Biol Cell 97:185–196PubMedCrossRefGoogle Scholar
  65. 65.
    Scoville DH, Sato T, He XC, Li L (2008) Current view: intestinal stem cells and signaling. Gastroenterology 134:849–864PubMedCrossRefGoogle Scholar
  66. 66.
    Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749PubMedCrossRefGoogle Scholar
  67. 67.
    Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199PubMedCrossRefGoogle Scholar
  68. 68.
    Siemens H, Neumann J, Jackstadt R, Mansmann U, Horst D, Kirchner T, Hermeking H (2013) Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer. Clin Cancer Res 19:710–720PubMedCrossRefGoogle Scholar
  69. 69.
    Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98:10356–10361PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12:847–865PubMedCrossRefGoogle Scholar
  71. 71.
    Bader AG (2012) miR-34—a microRNA replacement therapy is headed to the clinic. Front Genet 3:120PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Amsterdam A, Raanan C, Schreiber L, Freyhan O, Fabrikant Y, Melzer E, Givol D (2013) Differential localization of LGR5 and NANOG in clusters of colon cancer stem cells. Acta Histochem 115:320–329PubMedCrossRefGoogle Scholar
  73. 73.
    Bornschein J, Toth K, Selgrad M, Kuester D, Wex T, Molnar B, Tulassay Z, Malfertheiner P (2013) Dysregulation of CDX1, CDX2 and SOX2 in patients with gastric cancer also affects the non-malignant mucosa. J Clin Pathol 66:819–822PubMedCrossRefGoogle Scholar
  74. 74.
    Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, Liu Y, Reisfeld RA, Xiang R, Lv D et al (2012) SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS One 7:e36326PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Ibrahim EE, Babaei-Jadidi R, Saadeddin A, Spencer-Dene B, Hossaini S, Abuzinadah M, Li N, Fadhil W, Ilyas M, Bonnet D et al (2012) Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem Cells 30:2076–2087PubMedCrossRefGoogle Scholar
  76. 76.
    Lengerke C, Fehm T, Kurth R, Neubauer H, Scheble V, Muller F, Schneider F, Petersen K, Wallwiener D, Kanz L et al (2011) Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer 11:42PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Lu X, Mazur SJ, Lin T, Appella E, Xu Y (2013) The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene. doi: 10.1038/onc.2013.209
  78. 78.
    Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL, Onaitis MW (2010) Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One 5:e11022PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Raghoebir L, Bakker ER, Mills JC, Swagemakers S, Kempen MB, Munck AB, Driegen S, Meijer D, Grosveld F, Tibboel D et al (2012) SOX2 redirects the developmental fate of the intestinal epithelium toward a premature gastric phenotype. J Mol Cell Biol 4:377–385PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Tsukamoto T, Mizoshita T, Mihara M, Tanaka H, Takenaka Y, Yamamura Y, Nakamura S, Ushijima T, Tatematsu M (2005) Sox2 expression in human stomach adenocarcinomas with gastric and gastric-and-intestinal-mixed phenotypes. Histopathology 46:649–658PubMedCrossRefGoogle Scholar
  81. 81.
    Yasuda H, Tanaka K, Okita Y, Araki T, Saigusa S, Toiyama Y, Yokoe T, Yoshiyama S, Kawamoto A, Inoue Y et al (2011) CD133, OCT4, and NANOG in ulcerative colitis-associated colorectal cancer. Oncol Lett 2:1065–1071PubMedCentralPubMedGoogle Scholar
  82. 82.
    Zhang J, Espinoza LA, Kinders RJ, Lawrence SM, Pfister TD, Zhou M, Veenstra TD, Thorgeirsson SS, Jessup JM (2013) NANOG modulates stemness in human colorectal cancer. Oncogene 32:4397–4405PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Zhang J, Wang X, Chen B, Xiao Z, Li W, Lu Y, Dai J (2010) The human pluripotency gene NANOG/NANOGP8 is expressed in gastric cancer and associated with tumor development. Oncol Lett 1:457–463PubMedCentralPubMedGoogle Scholar
  84. 84.
    Chen Z, Xu WR, Qian H, Zhu W, Bu XF, Wang S, Yan YM, Mao F, Gu HB, Cao HL et al (2009) Oct4, a novel marker for human gastric cancer. J Surg Oncol 99:414–419PubMedCrossRefGoogle Scholar
  85. 85.
    Xiang R, Liao D, Cheng T, Zhou H, Shi Q, Chuang TS, Markowitz D, Reisfeld RA, Luo Y (2011) Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br J Cancer 104:1410–1417PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Han X, Fang X, Lou X, Hua D, Ding W, Foltz G, Hood L, Yuan Y, Lin B (2012) Silencing SOX2 induced mesenchymal–epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoS One 7:e41335PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Liu YH, Li Y, Liu XH, Sui HM, Liu YX, Xiao ZQ, Zheng P, Chen L, Yao S, Xing C et al (2013) A signature for induced pluripotent stem cell-associated genes in colorectal cancer. Med Oncol 30:426PubMedCrossRefGoogle Scholar
  88. 88.
    Meng HM, Zheng P, Wang XY, Liu C, Sui HM, Wu SJ, Zhou J, Ding YQ, Li JM (2010) Overexpression of NANOG predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther 9:295–302PubMedCrossRefGoogle Scholar
  89. 89.
    Noh KH, Kim BW, Song KH, Cho H, Lee YH, Kim JH, Chung JY, Hewitt SM, Seong SY, Mao CP et al (2012) Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J Clin Invest 122:4077–4093PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Li C, Yan Y, Ji W, Bao L, Qian H, Chen L, Wu M, Chen H, Li Z, Su C (2012) OCT4 positively regulates Survivin expression to promote cancer cell proliferation and leads to poor prognosis in esophageal squamous cell carcinoma. PLoS One 7:e49693PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Matsuoka J, Yashiro M, Sakurai K, Kubo N, Tanaka H, Muguruma K, Sawada T, Ohira M, Hirakawa K (2012) Role of the stemness factors SOX2, OCT3/4, and NANOG in gastric carcinoma. J Surg Res 174:130–135PubMedCrossRefGoogle Scholar
  92. 92.
    Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, Strahl BD, Blancafort P (2012) Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res 40:6725–6740PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Larue L, Bellacosa A (2005) Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24:7443–7454PubMedCrossRefGoogle Scholar
  94. 94.
    Sleeman JP, Thiery JP (2011) SnapShot: the epithelial–mesenchymal transition. Cell 145(162):e161Google Scholar
  95. 95.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601PubMedCrossRefGoogle Scholar
  96. 96.
    Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER et al (2011) A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial–mesenchymal transition. J Cell Biol 195:417–433PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Experimental and Molecular Pathology, Institute of PathologyLudwig-Maximilians-University MunichMunichGermany
  2. 2.German Cancer Research Center (DKFZ)HeidelbergGermany
  3. 3.German Cancer Consortium (DKTK)HeidelbergGermany

Personalised recommendations