Advertisement

Journal of Molecular Medicine

, Volume 92, Issue 3, pp 207–216 | Cite as

The role of cold shock domain proteins in inflammatory diseases

  • Jonathan A. Lindquist
  • Sabine Brandt
  • Anja Bernhardt
  • Cheng Zhu
  • Peter R. MertensEmail author
Review

Abstract

Cold shock domain proteins are characterized by the presence of one or more evolutionarily conserved cold shock domains, which each possess two nucleic acid-binding motifs. These proteins exert pleiotropic functions in cells via their ability to bind single-stranded RNA and/or DNA, thus allowing them to serve as transcriptional as well as translational regulators. Not only can they regulate their own expression, but they also regulate the expression of a number of pro- and anti-inflammatory cytokines, as well as cytokine receptors, making them key players in the orchestration of inflammatory processes and immune cell phenotypes. To add to their complexity, the expression of cold shock domain proteins is induced by cellular stress. At least one cold shock domain protein is actively secreted and binds to specific cell surface receptors, thereby influencing the proliferative and migratory capacity of the cell. The presence of cold shock domain proteins in the blood and/or urine of patients with cancer or inflammatory disease, as well as the identification of autoantibodies directed against these proteins make them potential targets of therapeutic interest.

Keywords

Cold shock domain proteins Y-box protein-1 DNA-binding proteins RNA-binding proteins Inflammation Chemotaxis Cytokines 

Notes

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG), Sonderforschungsbereich 854 (project A01) and Me1365/7-1. We apologize to those colleagues whose work we were unable to cite due to space restrictions.

Disclosure

The authors declare that they have no conflict of interests.

References

  1. 1.
    Wistow G (1990) Cold shock and DNA binding. Nature 344:823–824PubMedGoogle Scholar
  2. 2.
    Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305PubMedCentralPubMedGoogle Scholar
  3. 3.
    Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234PubMedCentralPubMedGoogle Scholar
  4. 4.
    Nastasi T, Scaturro M, Bellafiore M, Raimondi L, Beccari S, Cestelli A, di Liegro I (1999) PIPPin is a brain-specific protein that contains a cold-shock domain and binds specifically to H1 degrees and H3.3 mRNAs. J Biol Chem 274:24087–24093PubMedGoogle Scholar
  5. 5.
    Castiglia D, Scaturro M, Nastasi T, Cestelli A, Di Liegro I (1996) PIPPin, a putative RNA-binding protein specifically expressed in the rat brain. Biochem Biophys Res Commun 218:390–394PubMedGoogle Scholar
  6. 6.
    Manival X, Ghisolfi-Nieto L, Joseph G, Bouvet P, Erard M (2001) RNA-binding strategies common to cold-shock domain- and RNA recognition motif-containing proteins. Nucleic Acids Res 29:2223–2233PubMedCentralPubMedGoogle Scholar
  7. 7.
    Bouvet P, Matsumoto K, Wolffe AP (1995) Sequence-specific RNA recognition by the Xenopus Y-box proteins. An essential role for the cold shock domain. J Biol Chem 270:28297–28303PubMedGoogle Scholar
  8. 8.
    Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2:175–180PubMedGoogle Scholar
  9. 9.
    Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A 87:283–287PubMedCentralPubMedGoogle Scholar
  10. 10.
    Jones PG, VanBogelen RA, Neidhardt FC (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169:2092–2095PubMedCentralPubMedGoogle Scholar
  11. 11.
    Yamanaka K, Inouye M (1997) Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J Bacteriol 179:5126–5130PubMedCentralPubMedGoogle Scholar
  12. 12.
    Yamanaka K (1999) Cold shock response in Escherichia coli. J Mol Microbiol Biotechnol 1:193–202PubMedGoogle Scholar
  13. 13.
    Graumann PL, Marahiel MA (1999) Cold shock response in Bacillus subtilis. J Mol Microbiol Biotechnol 1:203–209PubMedGoogle Scholar
  14. 14.
    Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64:1457–1470PubMedGoogle Scholar
  15. 15.
    Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci U S A 103:10122–10127PubMedCentralPubMedGoogle Scholar
  16. 16.
    Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35:506–516PubMedCentralPubMedGoogle Scholar
  17. 17.
    Landsman D (1992) RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Res 20:2861–2864PubMedCentralPubMedGoogle Scholar
  18. 18.
    Skabkin MA, Evdokimova V, Thomas AA, Ovchinnikov LP (2001) The major messenger ribonucleoprotein particle protein p50 (YB-1) promotes nucleic acid strand annealing. J Biol Chem 276:44841–44847PubMedGoogle Scholar
  19. 19.
    Skabkina OV, Skabkin MA, Lyabin DN, Ovchinnikov LP (2004) P50/YB-1, a major protein of cytoplasmic mRNPs, regulates its own synthesis. Dokl Biochem Biophys 395:93–95PubMedGoogle Scholar
  20. 20.
    Lyabin DN, Eliseeva IA, Skabkina OV, Ovchinnikov LP (2011) Interplay between Y-box-binding protein 1 (YB-1) and poly(A) binding protein (PABP) in specific regulation of YB-1 mRNA translation. RNA Biol 8:883–892PubMedCentralPubMedGoogle Scholar
  21. 21.
    Lyabin DN, Nigmatullina LF, Doronin AN, Eliseeva IA, Ovchinnikov LP (2013) Identification of proteins specifically interacting with YB-1 mRNA 3' UTR and the effect of hnRNP Q on YB-1 mRNA translation. Biochemistry (Mosc) 78:651–659Google Scholar
  22. 22.
    Skabkina OV, Lyabin DN, Skabkin MA, Ovchinnikov LP (2005) YB-1 autoregulates translation of its own mRNA at or prior to the step of 40S ribosomal subunit joining. Mol Cell Biol 25:3317–3323PubMedCentralPubMedGoogle Scholar
  23. 23.
    Skabkina OV, Skabkin MA, Popova NV, Lyabin DN, Penalva LO, Ovchinnikov LP (2003) Poly(A)-binding protein positively affects YB-1 mRNA translation through specific interaction with YB-1 mRNA. J Biol Chem 278:18191–18198PubMedGoogle Scholar
  24. 24.
    Bae W, Jones PG, Inouye M (1997) CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression. J Bacteriol 179:7081–7088PubMedCentralPubMedGoogle Scholar
  25. 25.
    Fang L, Jiang W, Bae W, Inouye M (1997) Promoter-independent cold-shock induction of cspA and its derepression at 37 degrees C by mRNA stabilization. Mol Microbiol 23:355–364PubMedGoogle Scholar
  26. 26.
    Dormoy-Raclet V, Markovits J, Jacquemin-Sablon A, Jacquemin-Sablon H (2005) Regulation of Unr expression by 5′- and 3′-untranslated regions of its mRNA through modulation of stability and IRES mediated translation. RNA Biol 2:e27–e35PubMedGoogle Scholar
  27. 27.
    Jurchott K, Bergmann S, Stein U, Walther W, Janz M, Manni I, Piaggio G, Fietze E, Dietel M, Royer HD (2003) YB-1 as a cell cycle-regulated transcription factor facilitating cyclin A and cyclin B1 gene expression. J Biol Chem 278:27988–27996PubMedGoogle Scholar
  28. 28.
    Holm PS, Bergmann S, Jurchott K, Lage H, Brand K, Ladhoff A, Mantwill K, Curiel DT, Dobbelstein M, Dietel M et al (2002) YB-1 relocates to the nucleus in adenovirus-infected cells and facilitates viral replication by inducing E2 gene expression through the E2 late promoter. J Biol Chem 277:10427–10434PubMedGoogle Scholar
  29. 29.
    Stein U, Jurchott K, Walther W, Bergmann S, Schlag PM, Royer HD (2001) Hyperthermia-induced nuclear translocation of transcription factor YB-1 leads to enhanced expression of multidrug resistance-related ABC transporters. J Biol Chem 276:28562–28569PubMedGoogle Scholar
  30. 30.
    Bargou RC, Jurchott K, Wagener C, Bergmann S, Metzner S, Bommert K, Mapara MY, Winzer KJ, Dietel M, Dorken B et al (1997) Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat Med 3:447–450PubMedGoogle Scholar
  31. 31.
    Stenina OI, Poptic EJ, DiCorleto PE (2000) Thrombin activates a Y box-binding protein (DNA-binding protein B) in endothelial cells. J Clin Invest 106:579–587PubMedCentralPubMedGoogle Scholar
  32. 32.
    Stenina OI, Shaneyfelt KM, DiCorleto PE (2001) Thrombin induces the release of the Y-box protein dbpB from mRNA: a mechanism of transcriptional activation. Proc Natl Acad Sci U S A 98:7277–7282PubMedCentralPubMedGoogle Scholar
  33. 33.
    van Roeyen CRC SF, Brandt S, Kuhl VA, Martinkus S, Djudjaj S, Raffetseder U, Royer HD, Stefanidis I, Dunn SE, Dooley S, et al (2013) Cold shock Y-box protein-1 proteolysis autoregulates its transcriptional activities. Cell Commun Signal 11:63Google Scholar
  34. 34.
    Bader AG, Vogt PK (2005) Inhibition of protein synthesis by Y box-binding protein 1 blocks oncogenic cell transformation. Mol Cell Biol 25:2095–2106PubMedCentralPubMedGoogle Scholar
  35. 35.
    Ohashi S, Atsumi M, Kobayashi S (2009) HSP60 interacts with YB-1 and affects its polysome association and subcellular localization. Biochem Biophys Res Commun 385:545–550PubMedGoogle Scholar
  36. 36.
    Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D, Gregory RI (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147:1066–1079PubMedCentralPubMedGoogle Scholar
  37. 37.
    Frye BC, Halfter S, Djudjaj S, Muehlenberg P, Weber S, Raffetseder U, En-Nia A, Knott H, Baron JM, Dooley S et al (2009) Y-box protein-1 is actively secreted through a non-classical pathway and acts as an extracellular mitogen. EMBO Rep 10:783–789PubMedCentralPubMedGoogle Scholar
  38. 38.
    Rauen T, Raffetseder U, Frye BC, Djudjaj S, Muhlenberg PJ, Eitner F, Lendahl U, Bernhagen J, Dooley S, Mertens PR (2009) YB-1 acts as a ligand for Notch-3 receptors and modulates receptor activation. J Biol Chem 284:26928–26940PubMedCentralPubMedGoogle Scholar
  39. 39.
    Nickel W, Seedorf M (2008) Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu Rev Cell Dev Biol 24:287–308PubMedGoogle Scholar
  40. 40.
    Evdokimova V, Ruzanov P, Anglesio MS, Sorokin AV, Ovchinnikov LP, Buckley J, Triche TJ, Sonenberg N, Sorensen PH (2006) Akt-mediated YB-1 phosphorylation activates translation of silent mRNA species. Mol Cell Biol 26:277–292PubMedCentralPubMedGoogle Scholar
  41. 41.
    Evdokimova V, Ovchinnikov LP, Sorensen PH (2006) Y-box binding protein 1: providing a new angle on translational regulation. Cell Cycle 5:1143–1147PubMedGoogle Scholar
  42. 42.
    Bader AG, Vogt PK (2008) Phosphorylation by Akt disables the anti-oncogenic activity of YB-1. Oncogene 27:1179–1182PubMedGoogle Scholar
  43. 43.
    Sommerville J (1990) RNA-binding phosphoproteins and the regulation of maternal mRNA in Xenopus. J Reprod Fertil Suppl 42:225–233PubMedGoogle Scholar
  44. 44.
    Braddock M, Muckenthaler M, White MR, Thorburn AM, Sommerville J, Kingsman AJ, Kingsman SM (1994) Intron-less RNA injected into the nucleus of Xenopus oocytes accesses a regulated translation control pathway. Nucleic Acids Res 22:5255–5264PubMedCentralPubMedGoogle Scholar
  45. 45.
    Sommerville J, Ladomery M (1996) Masking of mRNA by Y-box proteins. FASEB J 10:435–443PubMedGoogle Scholar
  46. 46.
    Sorokin AV, Selyutina AA, Skabkin MA, Guryanov SG, Nazimov IV, Richard C, Th'ng J, Yau J, Sorensen PH, Ovchinnikov LP et al (2005) Proteasome-mediated cleavage of the Y-box-binding protein 1 is linked to DNA-damage stress response. EMBO J 24:3602–3612PubMedCentralPubMedGoogle Scholar
  47. 47.
    Ladomery M, Sommerville J (1994) Binding of Y-box proteins to RNA: involvement of different protein domains. Nucleic Acids Res 22:5582–5589PubMedCentralPubMedGoogle Scholar
  48. 48.
    Cohen SB, Ma W, Valova VA, Algie M, Harfoot R, Woolley AG, Robinson PJ, Braithwaite AW (2010) Genotoxic stress-induced nuclear localization of oncoprotein YB-1 in the absence of proteolytic processing. Oncogene 29:403–410PubMedGoogle Scholar
  49. 49.
    Matsumoto K, Meric F, Wolffe AP (1996) Translational repression dependent on the interaction of the Xenopus Y-box protein FRGY2 with mRNA. Role of the cold shock domain, tail domain, and selective RNA sequence recognition. J Biol Chem 271:22706–22712PubMedGoogle Scholar
  50. 50.
    Kim ER, Selyutina AA, Buldakov IA, Evdokimova V, Ovchinnikov LP, Sorokin AV (2013) The proteolytic YB-1 fragment interacts with DNA repair machinery and enhances survival during DNA damaging stress. Cell Cycle 12:3791–3803PubMedCentralPubMedGoogle Scholar
  51. 51.
    Lasham A, Print CG, Woolley AG, Dunn SE, Braithwaite AW (2013) YB-1: oncoprotein, prognostic marker and therapeutic target? Biochem J 449:11–23PubMedGoogle Scholar
  52. 52.
    Lovett DH, Cheng S, Cape L, Pollock AS, Mertens PR (2010) YB-1 alters MT1-MMP trafficking and stimulates MCF-7 breast tumor invasion and metastasis. Biochem Biophys Res Commun 398:482–488PubMedCentralPubMedGoogle Scholar
  53. 53.
    Bergmann S, Royer-Pokora B, Fietze E, Jurchott K, Hildebrandt B, Trost D, Leenders F, Claude JC, Theuring F, Bargou R et al (2005) YB-1 provokes breast cancer through the induction of chromosomal instability that emerges from mitotic failure and centrosome amplification. Cancer Res 65:4078–4087PubMedGoogle Scholar
  54. 54.
    Dahl E, En-Nia A, Wiesmann F, Krings R, Djudjaj S, Breuer E, Fuchs T, Wild PJ, Hartmann A, Dunn SE et al (2009) Nuclear detection of Y-box protein-1 (YB-1) closely associates with progesterone receptor negativity and is a strong adverse survival factor in human breast cancer. BMC Cancer 9:410PubMedCentralPubMedGoogle Scholar
  55. 55.
    Braithwaite AW, Del Sal G, Lu X (2006) Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ 13:984–993PubMedGoogle Scholar
  56. 56.
    Stumpo DJ, Lai WS, Blackshear PJ (2010) Inflammation: cytokines and RNA-based regulation. Wiley Interdiscip Rev RNA 1:60–80PubMedCentralPubMedGoogle Scholar
  57. 57.
    Stoecklin G, Kedersha N (2013) Relationship of GW/P-bodies with stress granules. Adv Exp Med Biol 768:197–211PubMedGoogle Scholar
  58. 58.
    Balzer E, Moss EG (2007) Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules. RNA Biol 4:16–25PubMedGoogle Scholar
  59. 59.
    Yang WH, Bloch DB (2007) Probing the mRNA processing body using protein macroarrays and "autoantigenomics". RNA 13:704–712PubMedCentralPubMedGoogle Scholar
  60. 60.
    Hou H, Wang F, Zhang W, Wang D, Li X, Bartlam M, Yao X, Rao Z (2011) Structure-functional analyses of CRHSP-24 plasticity and dynamics in oxidative stress response. J Biol Chem 286:9623–9635PubMedCentralPubMedGoogle Scholar
  61. 61.
    Anderson P (2008) Post-transcriptional control of cytokine production. Nat Immunol 9:353–359PubMedGoogle Scholar
  62. 62.
    Hofmann S, Cherkasova V, Bankhead P, Bukau B, Stoecklin G (2012) Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol Biol Cell 23:3786–3800PubMedCentralPubMedGoogle Scholar
  63. 63.
    Palanisamy V, Jakymiw A, Van Tubergen EA, D'Silva NJ, Kirkwood KL (2012) Control of cytokine mRNA expression by RNA-binding proteins and microRNAs. J Dent Res 91:651–658PubMedCentralPubMedGoogle Scholar
  64. 64.
    Giorgini F, Davies HG, Braun RE (2001) MSY2 and MSY4 bind a conserved sequence in the 3′ untranslated region of protamine 1 mRNA in vitro and in vivo. Mol Cell Biol 21:7010–7019PubMedCentralPubMedGoogle Scholar
  65. 65.
    Capowski EE, Esnault S, Bhattacharya S, Malter JS (2001) Y box-binding factor promotes eosinophil survival by stabilizing granulocyte-macrophage colony-stimulating factor mRNA. J Immunol 167:5970–5976PubMedGoogle Scholar
  66. 66.
    Evdokimova V, Ruzanov P, Imataka H, Raught B, Svitkin Y, Ovchinnikov LP, Sonenberg N (2001) The major mRNA-associated protein YB-1 is a potent 5′ cap-dependent mRNA stabilizer. EMBO J 20:5491–5502PubMedCentralPubMedGoogle Scholar
  67. 67.
    Graumann PL, Marahiel MA (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290PubMedGoogle Scholar
  68. 68.
    Ceman S, Nelson R, Warren ST (2000) Identification of mouse YB1/p50 as a component of the FMRP-associated mRNP particle. Biochem Biophys Res Commun 279:904–908PubMedGoogle Scholar
  69. 69.
    Ivanyi-Nagy R, Davidovic L, Khandjian EW, Darlix JL (2005) Disordered RNA chaperone proteins: from functions to disease. Cell Mol Life Sci 62:1409–1417PubMedGoogle Scholar
  70. 70.
    Lu ZH, Books JT, Ley TJ (2005) YB-1 is important for late-stage embryonic development, optimal cellular stress responses, and the prevention of premature senescence. Mol Cell Biol 25:4625–4637PubMedCentralPubMedGoogle Scholar
  71. 71.
    Raffetseder U, Rauen T, Boor P, Ostendorf T, Hanssen L, Floege J, En-Nia A, Djudjaj S, Frye BC, Mertens PR (2011) Extracellular YB-1 blockade in experimental nephritis upregulates Notch-3 receptor expression and signaling. Nephron Exp Nephrol 118:e100–e108PubMedGoogle Scholar
  72. 72.
    Skabkin MA, Kiselyova OI, Chernov KG, Sorokin AV, Dubrovin EV, Yaminsky IV, Vasiliev VD, Ovchinnikov LP (2004) Structural organization of mRNA complexes with major core mRNP protein YB-1. Nucleic Acids Res 32:5621–5635PubMedCentralPubMedGoogle Scholar
  73. 73.
    Chen CY, Gherzi R, Andersen JS, Gaietta G, Jurchott K, Royer HD, Mann M, Karin M (2000) Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev 14:1236–1248PubMedCentralPubMedGoogle Scholar
  74. 74.
    Seko Y, Cole S, Kasprzak W, Shapiro BA, Ragheb JA (2006) The role of cytokine mRNA stability in the pathogenesis of autoimmune disease. Autoimmun Rev 5:299–305PubMedGoogle Scholar
  75. 75.
    Khandelwal P, Padala MK, Cox J, Guntaka RV (2009) The N-terminal domain of y-box binding protein-1 induces cell cycle arrest in g2/m phase by binding to cyclin d1. Int J Cell Biol 2009:243532Google Scholar
  76. 76.
    Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P et al (1990) Eosinophilic inflammation in asthma. N Engl J Med 323:1033–1039PubMedGoogle Scholar
  77. 77.
    Lopez AF, Williamson DJ, Gamble JR, Begley CG, Harlan JM, Klebanoff SJ, Waltersdorph A, Wong G, Clark SC, Vadas MA (1986) Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival. J Clin Invest 78:1220–1228PubMedCentralPubMedGoogle Scholar
  78. 78.
    Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18:816–827PubMedGoogle Scholar
  79. 79.
    Dooley S, Said HM, Gressner AM, Floege J, En-Nia A, Mertens PR (2006) Y-box protein-1 is the crucial mediator of antifibrotic interferon-gamma effects. J Biol Chem 281:1784–1795PubMedGoogle Scholar
  80. 80.
    Fukada T, Tonks NK (2003) Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling. EMBO J 22:479–493PubMedCentralPubMedGoogle Scholar
  81. 81.
    Inagaki Y, Kushida M, Higashi K, Itoh J, Higashiyama R, Hong YY, Kawada N, Namikawa K, Kiyama H, Bou-Gharios G et al (2005) Cell type-specific intervention of transforming growth factor beta/Smad signaling suppresses collagen gene expression and hepatic fibrosis in mice. Gastroenterology 129:259–268PubMedGoogle Scholar
  82. 82.
    Norman JT, Lindahl GE, Shakib K, En-Nia A, Yilmaz E, Mertens PR (2001) The Y-box binding protein YB-1 suppresses collagen alpha 1(I) gene transcription via an evolutionarily conserved regulatory element in the proximal promoter. J Biol Chem 276:29880–29890PubMedGoogle Scholar
  83. 83.
    Hanssen L, Alidousty C, Djudjaj S, Frye BC, Rauen T, Boor P, Mertens PR, van Roeyen CR, Tacke F, Heymann F et al (2013) YB-1 is an early and central mediator of bacterial and sterile inflammation in vivo. J Immunol 191:2604–2613PubMedGoogle Scholar
  84. 84.
    Roger T, Froidevaux C, Le Roy D, Reymond MK, Chanson AL, Mauri D, Burns K, Riederer BM, Akira S, Calandra T (2009) Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc Natl Acad Sci U S A 106:2348–2352PubMedCentralPubMedGoogle Scholar
  85. 85.
    Tacke F, Kanig N, En-Nia A, Kaehne T, Eberhardt CS, Shpacovitch V, Trautwein C, Mertens PR (2011) Y-box protein-1/p18 fragment identifies malignancies in patients with chronic liver disease. BMC Cancer 11:185PubMedCentralPubMedGoogle Scholar
  86. 86.
    Tacke F, Galm O, Kanig N, Yagmur E, Brandt S, Lindquist JA, Eberhardt CS, Raffetseder U, Mertens PR (2014) High prevalence of Y-box protein-1/p18 fragment in plasma of patients with malignancies of different origin. BMC Cancer 14:33Google Scholar
  87. 87.
    Willis WL, Hariharan S, David JJ, Strauch AR (2013) Transglutaminase-2 mediates calcium-regulated crosslinking of the Y-box 1 (YB-1) translation-regulatory protein in TGFbeta1-activated myofibroblasts. J Cell Biochem 114:2753–2769Google Scholar
  88. 88.
    Gaudreault I, Guay D, Lebel M (2004) YB-1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic Acids Res 32:316–327PubMedCentralPubMedGoogle Scholar
  89. 89.
    Evdokimova VM, Wei CL, Sitikov AS, Simonenko PN, Lazarev OA, Vasilenko KS, Ustinov VA, Hershey JW, Ovchinnikov LP (1995) The major protein of messenger ribonucleoprotein particles in somatic cells is a member of the Y-box binding transcription factor family. J Biol Chem 270:3186–3192PubMedGoogle Scholar
  90. 90.
    Selivanova OM, Guryanov SG, Enin GA, Skabkin MA, Ovchinnikov LP, Serdyuk IN (2010) YB-1 is capable of forming extended nanofibrils. Biochemistry (Mosc) 75:115–120Google Scholar
  91. 91.
    Guryanov SG, Selivanova OM, Nikulin AD, Enin GA, Melnik BS, Kretov DA, Serdyuk IN, Ovchinnikov LP (2012) Formation of amyloid-like fibrils by Y-box binding protein 1 (YB-1) is mediated by its cold shock domain and modulated by disordered terminal domains. PLoS One 7: e36969Google Scholar
  92. 92.
    Guryanov SG, Filimonov VV, Timchenko AA, Melnik BS, Kihara H, Kutyshenko VP, Ovchinnikov LP, Semisotnov GV (2013) The major mRNP protein YB-1: structural and association properties in solution. Biochim Biophys Acta 1834:559–567PubMedGoogle Scholar
  93. 93.
    Tafuri SR, Wolffe AP (1992) DNA binding, multimerization, and transcription stimulation by the Xenopus Y box proteins in vitro. New Biol 4:349–359PubMedGoogle Scholar
  94. 94.
    Izumi H, Imamura T, Nagatani G, Ise T, Murakami T, Uramoto H, Torigoe T, Ishiguchi H, Yoshida Y, Nomoto M et al (2001) Y box-binding protein-1 binds preferentially to single-stranded nucleic acids and exhibits 3′–>5′ exonuclease activity. Nucleic Acids Res 29:1200–1207PubMedCentralPubMedGoogle Scholar
  95. 95.
    Matsumoto K, Wolffe AP (1998) Gene regulation by Y-box proteins: coupling control of transcription and translation. Trends Cell Biol 8:318–323PubMedGoogle Scholar
  96. 96.
    Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao G et al (2012) Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149:768–779PubMedGoogle Scholar
  97. 97.
    Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767PubMedGoogle Scholar
  98. 98.
    Bloch DB, Nobre RA, Yang WH (2013) GW/P-bodies and autoimmune disease. Adv Exp Med Biol 768:61–70PubMedGoogle Scholar
  99. 99.
    Jeoung DI, Bong Lee E, Lee S, Lim Y, Lee DY, Kim J, Kim HY, Wook Song Y (2002) Autoantibody to DNA binding protein B as a novel serologic marker in systemic sclerosis. Biochem Biophys Res Commun 299:549–554PubMedGoogle Scholar
  100. 100.
    Brandt S, Raffetseder U, Djudjaj S, Schreiter A, Kadereit B, Michele M, Pabst M, Zhu C, Mertens PR (2012) Cold shock Y-box protein-1 participates in signaling circuits with auto-regulatory activities. Eur J Cell Biol 91:464–471PubMedGoogle Scholar
  101. 101.
    Pu L, Jing S, Bianqin G, Ping L, Qindong L, Chenggui L, Feng C, Wenbin K, Qin W, Jinyu D et al (2013) Development of a chemiluminescence immunoassay for serum YB-1 and its clinical application as a potential diagnostic marker for hepatocellular carcinoma. Hepat Mon 13:e8918PubMedCentralPubMedGoogle Scholar
  102. 102.
    Coles LS, Diamond P, Occhiodoro F, Vadas MA, Shannon MF (1996) Cold shock domain proteins repress transcription from the GM-CSF promoter. Nucleic Acids Res 24:2311–2317PubMedCentralPubMedGoogle Scholar
  103. 103.
    Mertens PR, Martin IV, Frye BC, Rauen T, Strauch S, Pabst M, Geier A (2012) Rat Mrp2 gene expression is regulated by an interleukin-1beta-stimulated biphasic response with enhanced transcription and subcellular shuttling of YB-1. Eur J Cell Biol 91:533–541PubMedGoogle Scholar
  104. 104.
    Raffetseder U, Rauen T, Djudjaj S, Kretzler M, En-Nia A, Tacke F, Zimmermann HW, Nelson PJ, Frye BC, Floege J et al (2009) Differential regulation of chemokine CCL5 expression in monocytes/macrophages and renal cells by Y-box protein-1. Kidney Int 75:185–196PubMedGoogle Scholar
  105. 105.
    Krohn R, Raffetseder U, Bot I, Zernecke A, Shagdarsuren E, Liehn EA, van Santbrink PJ, Nelson PJ, Biessen EA, Mertens PR et al (2007) Y-box binding protein-1 controls CC chemokine ligand-5 (CCL5) expression in smooth muscle cells and contributes to neointima formation in atherosclerosis-prone mice. Circulation 116:1812–1820PubMedGoogle Scholar
  106. 106.
    Silveira CG, Krampe J, Ruhland B, Diedrich K, Hornung D, Agic A (2012) Cold-shock domain family member YB-1 expression in endometrium and endometriosis. Hum Reprod 27:173–182PubMedGoogle Scholar
  107. 107.
    Hornung D, Bentzien F, Wallwiener D, Kiesel L, Taylor RN (2001) Chemokine bioactivity of RANTES in endometriotic and normal endometrial stromal cells and peritoneal fluid. Mol Hum Reprod 7:163–168PubMedGoogle Scholar
  108. 108.
    Fraser DJ, Phillips AO, Zhang X, van Roeyen CR, Muehlenberg P, En-Nia A, Mertens PR (2008) Y-box protein-1 controls transforming growth factor-beta1 translation in proximal tubular cells. Kidney Int 73:724–732PubMedGoogle Scholar
  109. 109.
    Jenkins RH, Bennagi R, Martin J, Phillips AO, Redman JE, Fraser DJ (2010) A conserved stem loop motif in the 5'untranslated region regulates transforming growth factor-beta(1) translation. PLoS One 5:e12283PubMedCentralPubMedGoogle Scholar
  110. 110.
    van Roeyen CR, Eitner F, Martinkus S, Thieltges SR, Ostendorf T, Bokemeyer D, Luscher B, Luscher-Firzlaff JM, Floege J, Mertens PR (2005) Y-box protein 1 mediates PDGF-B effects in mesangioproliferative glomerular disease. J Am Soc Nephrol 16:2985–2996PubMedGoogle Scholar
  111. 111.
    Coles LS, Lambrusco L, Burrows J, Hunter J, Diamond P, Bert AG, Vadas MA, Goodall GJ (2005) Phosphorylation of cold shock domain/Y-box proteins by ERK2 and GSK3beta and repression of the human VEGF promoter. FEBS lett 579:5372–5378PubMedGoogle Scholar
  112. 112.
    Hanssen L, Frye BC, Ostendorf T, Alidousty C, Djudjaj S, Boor P, Rauen T, Floege J, Mertens PR, Raffetseder U (2011) Y-box binding protein-1 mediates profibrotic effects of calcineurin inhibitors in the kidney. J Immunol 187:298–308PubMedGoogle Scholar
  113. 113.
    Pfeiffer JR, McAvoy BL, Fecteau RE, Deleault KM, Brooks SA (2011) CARHSP1 is required for effective tumor necrosis factor alpha mRNA stabilization and localizes to processing bodies and exosomes. Mol Cell Biol 31:277–286PubMedCentralPubMedGoogle Scholar
  114. 114.
    Coles LS, Diamond P, Lambrusco L, Hunter J, Burrows J, Vadas MA, Goodall GJ (2002) A novel mechanism of repression of the vascular endothelial growth factor promoter, by single strand DNA binding cold shock domain (Y-box) proteins in normoxic fibroblasts. Nucleic Acids Res 30:4845–4854PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jonathan A. Lindquist
    • 1
  • Sabine Brandt
    • 1
  • Anja Bernhardt
    • 1
  • Cheng Zhu
    • 1
    • 2
  • Peter R. Mertens
    • 1
    Email author
  1. 1.Department of Nephrology and Hypertension, Diabetes and EndocrinologyOtto-von-Guericke University MagdeburgMagdeburgGermany
  2. 2.Department of Nephrology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina

Personalised recommendations