Skip to main content
Log in

FP-receptor gene silencing ameliorates myocardial fibrosis and protects from diabetic cardiomyopathy

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Prostaglandin F2α-F-prostanoid (PGF2α-FP) receptor is closely related to insulin resistance, which plays a causal role in the pathogenesis of diabetic cardiomyopathy (DCM). We sought to reveal whether PGF2α-FP receptor plays an important part in modulating DCM and the mechanisms involved. We established the type 2 diabetes rat model by high-fat diet and low-dose streptozotocin (STZ) and then evaluated its characteristics by metabolite tests, Western blot analysis for FP-receptor expression, histopathologic analyses of cardiomyocyte density and fibrosis area. Next, we used gene silencing to investigate the role of FP receptor in the pathophysiologic features of DCM. Our study showed elevated cholesterol, triglyceride, glucose, and insulin levels, severe insulin resistance, and FP-receptor overexpression in diabetic rats. The collagen volume fraction (CVF) and perivascular collagen area/luminal area (PVCA/LA) were higher in the diabetic group than the control group (CVF% 10.99 ± 0.99 vs 1.59 ± 0.18, P < 0.05; PVCA/LA% 17.07 ± 2.61 vs 2.86 ± 0.69, P < 0.05). We found that the silencing of FP receptor decreased cholesterol, triglyceride, glucose, and insulin levels and ameliorated insulin resistance. The CVF and PVCF/LA were significantly downregulated in FP-receptor short hairpin RNA (shRNA) treatment group (FP-receptor shRNA group vs vehicle group: CVF% 5.59 ± 0.92 vs 10.97 ± 1.33, P < 0.05, PVCA/LA% 4.74 ± 1.57 vs 14.79 ± 2.22, P < 0.05; FP-receptor shRNA + PGF2α group vs vehicle group : CVF% 5.19 ± 0.79 vs 10.97 ± 1.33, P < 0.05, PVCA/LA% 5.96 ± 1.15 vs 14.79 ± 2.22, P < 0.05, respectively). Furthermore, with FP-receptor gene silencing, the activated protein kinase C (PKC) and Rho kinase were significantly decreased, and the blunted phosphorylation of Akt was restored. FP-receptor gene silencing may exert a protective effect on DCM by improving myocardial fibrosis, suggesting a new therapeutic approach for human DCM.

Key messages

  • FP-receptor gene silencing improves glucose tolerance and insulin resistance in type 2 diabetes (T2D).

  • FP-receptor gene silencing modulates the activities of PKC/Rho and Akt signaling pathways in T2D.

  • FP-receptor gene silencing decreases collagen expression and ameliorates myocardial fibrosis in T2D.

  • FP-receptor gene silencing protects from diabetic cardiomyopathy in T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goyal B, Mehta A (2013) Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfunction. Hum Exp Toxicol 32:571–590

    Article  CAS  PubMed  Google Scholar 

  2. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605

    Article  CAS  PubMed  Google Scholar 

  3. Li CJ, Lv L, Li H (2012) Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc Diabetol 11:11–73

    Article  PubMed Central  PubMed  Google Scholar 

  4. Creemers EE, Pinto YM (2011) Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 89:265–272

    Article  CAS  PubMed  Google Scholar 

  5. Ti Y, Xie GL, Wang ZH, Bi XL, Ding WY, Wang J, Jiang GH, Bu PL, Zhang Y, Zhong M et al (2011) TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes 60:2963–2974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Witteles RM, Fowler MB (2008) Insulin-resistant cardiomyopathy clinical evidence, mechanisms and treatment options. J Am Coll Cardiol 51:93–102

    Article  CAS  PubMed  Google Scholar 

  7. Gogg S, Smith U, Jansson PA (2009) Increased MAPK activation and impaired insulin signaling in subcutaneous microvascular endothelial cells in type 2 diabetes: the role of endothelin-1. Diabetes 58:2238–2245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Fujino H, Srinivasan D, Regan JW (2002) Cellular conditioning and activation of beta-catenin signaling by the FPB prostanoid receptor. J Biol Chem 277:48786–48795

    Article  CAS  PubMed  Google Scholar 

  9. Olman MA (2009) Beyond TGF-β: a prostaglandin promotes fibrosis. Nat Med 15:1360–13618

    Article  CAS  PubMed  Google Scholar 

  10. Oga T, Matsuoka T, Yao C, Nonomura K, Kitaoka S, Sakata D, Kita Y, Tanizawa K, Taguchi Y, Chin K et al (2009) Prostaglandin F (2alpha) receptor signaling facilitates bleomycin-induced pulmonary fibrosis independently of transforming growth factor-beta. Nat Med 15:1426–1430

    Article  CAS  PubMed  Google Scholar 

  11. Guo CM, Kasaraneni N, Sun K, Myatt L (2012) Cross talk between PKC and CREB in the induction of COX-2 by PGF2α in human amnion fibroblasts. Endocrinology 53:4938–4944

    Article  Google Scholar 

  12. Slater SJ, Seiz JL, Stagliano BA, Stubbs CD (2001) Interaction of protein kinase C isozymes with Rho GTP kinases. Biochemistry 40:4437–4445

    Article  CAS  PubMed  Google Scholar 

  13. Wygrecka M, Dahal BK, Kosanovic D, Petersen F, Taborski B, von Gerlach S, Didiasova M, Zakrzewicz D, Preissner KT, Schermuly RT et al (2013) Mast cells and fibroblasts work in concert to aggravate pulmonary fibrosis: role of transmembrane SCF and the PAR-2/PKC-α/Raf-1/p44/42 signaling pathway. Am J Pathol 182:2094–2108

    Article  CAS  PubMed  Google Scholar 

  14. Jia ng C, Huang H, Liu J, Wang Y, Lu Z, Xu Z (2012) Fasudil, a rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci 13:8293–8307

    Article  CAS  Google Scholar 

  15. Ding WY, Ti Y, Wang J, Wang ZH, Xie GL, Shang YY, Tang MX, Zhang Y, Zhang W, Zhong M (2012) Prostaglandin F2α facilitates collagen synthesis in cardiac fibroblasts via an F-prostanoid receptor/protein kinase C/Rho kinase pathway independent of transforming growth factor β1. Int J Biochem Cell Biol 44:1031–1039

    Article  CAS  PubMed  Google Scholar 

  16. Kanda T, Hayashi K, Wakino S, Homma K, Yoshioka K, Hasegawa K, Sugano N, Tatematsu S, Takamatsu I, Mitsuhashi T et al (2005) Role of Rho-kinase and p27 in angiotensin II-induced vascular injury. Hypertension 45:724–729

    Article  CAS  PubMed  Google Scholar 

  17. Xia Z, Kuo KH, Nagareddy PR, Wang F, Guo Z, Guo T, Jiang J, McNeill JH (2007) N-acetylcysteine attenuates PKCbeta2 overexpression and myocardial hypertrophy in streptozotocin-induced diabetic rats. Cardiovasc Res 73:770–782

    Article  CAS  PubMed  Google Scholar 

  18. Liu PY, Chen JH, Lin LJ, Liao JK (2007) Increased Rho kinase activity in a Taiwanese population with metabolic syndrome. J Am Coll Cardiol 49:1619–1624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bertrand L, Horman S, Beauloye C, Vanoverschelde JL (2008) Insulin signalling in the heart. Cardiovasc Res 79:238–248

    Article  CAS  PubMed  Google Scholar 

  20. Osorio-Fuentealba C, Contreras-Ferrat AE, Altamirano F, Espinosa A, Li Q, Niu W, Lavandero S, Klip A, Jaimovich E (2013) Electrical stimuli release ATP to increase GLUT4 translocation and glucose uptake via PI3Kγ-Akt-AS160 in skeletal muscle cells. Diabetes 62:1519–1526

    Google Scholar 

  21. Hu S, Chang Y, Wang J, Xue C, Shi D, Xu H, Wang Y (2013) Fucosylated chondroitin sulfate from Acaudina molpadioides improves hyperglycemia via activation of PKB/GLUT4 signaling in skeletal muscle of insulin resistant mice. Food Funct 4:1639–1646

    Article  CAS  PubMed  Google Scholar 

  22. Marcus Y, Shefer G, Sasson K, Kohen F, Limor RB, Pappo O, Nevo Nito I, Bach M, Berkutzki T, Fridkin M et al (2013) Angiotensin 1–7 as means to prevent the metabolic syndrome: lessons from the fructose-fed rat model. Diabetes 62:1121–1130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Goupil E, Wisehart V, Khoury E, Zimmerman B, Jaffal S, Hébert TE, Laporte SA (2012) Biasing the prostaglandin F2α receptor responses toward EGFR-dependent transactivation of MAPK. Mol Endocrinol 26:1189–1202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the research grants from the Independent Innovation Foundation of Shandong University (nos. 2012JC034), the Key Technologies Research and Development Program of Shandong Province (nos. 2010G0020262), the Natural Science Foundation of Shandong Province (nos. ZR2009CM022), the National Natural Science Foundation of China (nos. 30871038, 30971215, 81070192, 81070141, 81100605, 81270287, and 81270352), and the National Basic Research Program of China (973 Program, no. 2012CB722406).

Conflict of interest

No conflicts

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Zhong or Wei Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Wy., Liu, L., Wang, Zh. et al. FP-receptor gene silencing ameliorates myocardial fibrosis and protects from diabetic cardiomyopathy. J Mol Med 92, 629–640 (2014). https://doi.org/10.1007/s00109-013-1119-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1119-9

Keywords

Navigation