Skip to main content
Log in

RelB, together with RelA, sustains cell survival and confers proteasome inhibitor sensitivity of chronic lymphocytic leukemia cells from bone marrow

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Although the biological factors that contribute to the pathogenesis of chronic lymphocytic leukemia (CLL) remain widely unresolved, it has been suggested that dysregulated cell survival and proliferation are fundamental to this process. Constitutive classical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation protects CLL B-cells from cell death and plays a critical role in the acquisition of chemoresistance. RelB, representing the alternative NF-κB activity, functions specifically in lymphoid organogenesis and B-cell maturation. RelB indeed plays a tumor-supportive role and confers radiation resistance in tumors. However, the involvement of RelB in CLL has not been addressed. Here, we analyzed the NF-κB activation in 67 of CLL bone marrow (BM). Both the RelA and RelB activity were detected in CLL B-cells from BM, in spite of inevitable variability. Low RelB activity was linked to a favorable prognosis of CLL. The migration and adhesion abilities of CLL B-cells were not affected by the RelB activity. High RelB activity, together with the RelA activity, maintained basal survival of cells. The induction of RelA and RelB expression in the nucleus was responsible for better survival of CLL B-cells supported by bone marrow stromal cells. In addition, the presence of high RelB activity in CLL B-cells was correlated with sensitivity to proteasome inhibitor but not fludarabine. Taken together, we provided evidences that not only RelA but also RelB, subunits of NF-κB family, played an important role in the cellular behaviors of CLL cells from BM. The strength of RelB activity influenced the prognosis of CLL patients.

Key message

  • RelB, with RelA activity, maintained the basal survival of CLL cells from BM.

  • RelB, with RelA, conferred the proteasome inhibitor sensitivity of CLL cells.

  • Induction of RelA and RelB was responsible for the better survival of CLL B-cells.

  • The strength of RelB activity influenced the prognosis of CLL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S (2010) From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 10:37–50. doi:10.1038/nrc2764

    CAS  PubMed  Google Scholar 

  2. Gaidano G, Foa R, Dalla-Favera R (2012) Molecular pathogenesis of chronic lymphocytic leukemia. J Clin Invest 122:3432–3438. doi:10.1172/JCI64101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, Escaramis G, Jares P, Bea S, Gonzalez-Diaz M et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475:101–105. doi:10.1038/nature10113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S, Chiaretti S, Del Giudice I, Fabbri G, Bruscaggin A et al (2012) Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 119:2854–2862. doi:10.1182/blood-2011-12-395673

    Article  CAS  PubMed  Google Scholar 

  5. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ (2000) Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 164:2200–2206

    CAS  PubMed  Google Scholar 

  6. Cuni S, Perez-Aciego P, Perez-Chacon G, Vargas JA, Sanchez A, Martin-Saavedra FM, Ballester S, Garcia-Marco J, Jorda J, Durantez A (2004) A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 18:1391–1400. doi:10.1038/sj.leu.24033982403398

    Article  CAS  PubMed  Google Scholar 

  7. Lopez-Guerra M, Colomer D (2010) NF-kappaB as a therapeutic target in chronic lymphocytic leukemia. Expert Opin Ther Targets 14:275–288. doi:10.1517/14728221003598930

    Article  CAS  PubMed  Google Scholar 

  8. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733. doi:10.1146/annurev.immunol.021908.132641

    Article  CAS  PubMed  Google Scholar 

  9. DiDonato JA, Mercurio F, Karin M (2012) NF-kappaB and the link between inflammation and cancer. Immunol Rev 246:379–400. doi:10.1111/j.1600-065X.2012.01099.x

    Article  PubMed  Google Scholar 

  10. Guo F, Tanzer S, Busslinger M, Weih F (2008) Lack of nuclear factor-kappa B2/p100 causes a RelB-dependent block in early B lymphopoiesis. Blood 112:551–559. doi:10.1182/blood-2007-11-125930

    Article  CAS  PubMed  Google Scholar 

  11. Weih F, Caamano J (2003) Regulation of secondary lymphoid organ development by the nuclear factor-kappaB signal transduction pathway. Immunol Rev 195:91–105

    Article  CAS  PubMed  Google Scholar 

  12. Pickering BM, de Mel S, Lee M, Howell M, Habens F, Dallman CL, Neville LA, Potter KN, Mann J, Mann DA et al (2007) Pharmacological inhibitors of NF-kappaB accelerate apoptosis in chronic lymphocytic leukaemia cells. Oncogene 26:1166–1177. doi:10.1038/sj.onc.1209897

    Article  CAS  PubMed  Google Scholar 

  13. Romano MF, Lamberti A, Tassone P, Alfinito F, Costantini S, Chiurazzi F, Defrance T, Bonelli P, Tuccillo F, Turco MC et al (1998) Triggering of CD40 antigen inhibits fludarabine-induced apoptosis in B chronic lymphocytic leukemia cells. Blood 92:990–995

    CAS  PubMed  Google Scholar 

  14. Hewamana S, Alghazal S, Lin TT, Clement M, Jenkins C, Guzman ML, Jordan CT, Neelakantan S, Crooks PA, Burnett AK et al (2008) The NF-kappaB subunit Rel A is associated with in vitro survival and clinical disease progression in chronic lymphocytic leukemia and represents a promising therapeutic target. Blood 111:4681–4689. doi:10.1182/blood-2007-11-125278

    Article  CAS  PubMed  Google Scholar 

  15. Hewamana S, Lin TT, Rowntree C, Karunanithi K, Pratt G, Hills R, Fegan C, Brennan P, Pepper C (2009) Rel a is an independent biomarker of clinical outcome in chronic lymphocytic leukemia. J Clin Oncol 27:763–769. doi:10.1200/JCO.2008.19.1114

    Article  PubMed  Google Scholar 

  16. Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM (2010) Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 115:3541–3552. doi:10.1182/blood-2009-09-243535

    Article  CAS  PubMed  Google Scholar 

  17. dos Santos NR, Williame M, Gachet S, Cormier F, Janin A, Weih D, Weih F, Ghysdael J (2008) RelB-dependent stromal cells promote T-cell leukemogenesis. PLoS One 3:e2555. doi:10.1371/journal.pone.0002555

    Article  PubMed Central  PubMed  Google Scholar 

  18. Guo F, Sun A, Wang W, He J, Hou J, Zhou P, Chen Z (2009) TRAF1 is involved in the classical NF-kappaB activation and CD30-induced alternative activity in Hodgkin's lymphoma cells. Mol Immunol 46:2441–2448. doi:10.1016/j.molimm.2009.05.178

    Article  CAS  PubMed  Google Scholar 

  19. Ranuncolo SM, Pittaluga S, Evbuomwan MO, Jaffe ES, Lewis BA (2012) Hodgkin lymphoma requires stabilized NIK and constitutive RelB expression for survival. Blood 120:3756–3763. doi:10.1182/blood-2012-01-405951

    Article  CAS  PubMed  Google Scholar 

  20. Guo F, Kang S, Zhou P, Guo L, Ma L, Hou J (2011) Maspin expression is regulated by the non-canonical NF-kappaB subunit in androgen-insensitive prostate cancer cell lines. Mol Immunol 49:8–17. doi:10.1016/j.molimm.2011.07.013

    Article  CAS  PubMed  Google Scholar 

  21. Yilmaz ZB, Weih DS, Sivakumar V, Weih F (2003) RelB is required for Peyer's patch development: differential regulation of p52-RelB by lymphotoxin and TNF. EMBO J 22:121–130. doi:10.1093/emboj/cdg004

    Article  CAS  PubMed  Google Scholar 

  22. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D, Murphy EJ, Koduru P, Ferrarini M, Zupo S et al (2005) In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 115:755–764. doi:10.1172/JCI23409

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Aalto Y, El-Rifa W, Vilpo L, Ollila J, Nagy B, Vihinen M, Vilpo J, Knuutila S (2001) Distinct gene expression profiling in chronic lymphocytic leukemia with 11q23 deletion. Leukemia 15:1721–1728

    Article  CAS  PubMed  Google Scholar 

  24. Burger JA (2011) Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program 2011:96–103. doi:10.1182/asheducation-2011.1.96

    Article  PubMed  Google Scholar 

  25. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, Gibellini F, Njuguna N, Lee E, Stennett L et al (2011) The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 117:563–574. doi:10.1182/blood-2010-05-284984

    Article  CAS  PubMed  Google Scholar 

  26. Shukla A, Chaturvedi NK, Ahrens AK, Cutucache CE, Mittal AK, Bierman P, Weisenburger DD, Lu R, Joshi SS (2013) Stromal tumor microenvironment in chronic lymphocytic leukemia: regulation of leukemic progression. J Leuk 1:113–121. doi:10.4172/2329-6917.1000113

    Article  Google Scholar 

  27. Furman RR (2010) Prognostic markers and stratification of chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program 2010:77–81. doi:10.1182/asheducation-2010.1.77

    Article  PubMed  Google Scholar 

  28. Coscia M, Pantaleoni F, Riganti C, Vitale C, Rigoni M, Peola S, Castella B, Foglietta M, Griggio V, Drandi D et al (2011) IGHV unmutated CLL B cells are more prone to spontaneous apoptosis and subject to environmental prosurvival signals than mutated CLL B cells. Leukemia 25:828–837. doi:10.1038/leu.2011.12

    Article  CAS  PubMed  Google Scholar 

  29. Xu Y, Josson S, Fang F, Oberley TD, St Clair DK, Wan XS, Sun Y, Bakthavatchalu V, Muthuswamy A, St Clair WH (2009) RelB enhances prostate cancer growth: implications for the role of the nuclear factor-kappaB alternative pathway in tumorigenicity. Cancer Res 69:3267–3271. doi:10.1158/0008-5472.CAN-08-4635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Holley AK, Xu Y, St Clair DK, St Clair WH (2010) RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells. Ann N Y Acad Sci 1201:129–136. doi:10.1111/j.1749-6632.2010.05613.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F, Chalbos D, Sonenshein GE (2007) Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 9:470–478. doi:10.1038/ncb1559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wang X, Belguise K, O'Neill CF, Sanchez-Morgan N, Romagnoli M, Eddy SF, Mineva ND, Yu Z, Min C, Trinkaus-Randall V et al (2009) RelB NF-kappaB represses estrogen receptor alpha expression via induction of the zinc finger protein Blimp1. Mol Cell Biol 29:3832–3844. doi:10.1128/MCB.00032-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mineva ND, Wang X, Yang S, Ying H, Xiao ZX, Holick MF, Sonenshein GE (2009) Inhibition of RelB by 1,25-dihydroxyvitamin D3 promotes sensitivity of breast cancer cells to radiation. J Cell Physiol 220:593–599. doi:10.1002/jcp.21765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Endo T, Nishio M, Enzler T, Cottam HB, Fukuda T, James DF, Karin M, Kipps TJ (2007) BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway. Blood 109:703–710. doi:10.1182/blood-2006-06-027755

    Article  CAS  PubMed  Google Scholar 

  35. Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F, Marasca R, Laurenti L, Bruscaggin A, Cerri M et al (2012) Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 119:521–529. doi:10.1182/blood-2011-09-379966

    Article  CAS  PubMed  Google Scholar 

  36. Villamor N, Conde L, Martinez-Trillos A, Cazorla M, Navarro A, Bea S, Lopez C, Colomer D, Pinyol M, Aymerich M et al (2012) NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia. doi:10.1038/leu.2012.357

    Google Scholar 

  37. Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV (1996) Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 92:97–103

    Article  CAS  PubMed  Google Scholar 

  38. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P (1998) Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 91:2387–2396

    CAS  PubMed  Google Scholar 

  39. Kurtova AV, Balakrishnan K, Chen R, Ding W, Schnabl S, Quiroga MP, Sivina M, Wierda WG, Estrov Z, Keating MJ et al (2009) Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 114:4441–4450. doi:10.1182/blood-2009-07-233718

    Article  CAS  PubMed  Google Scholar 

  40. Lwin T, Hazlehurst LA, Li Z, Dessureault S, Sotomayor E, Moscinski LC, Dalton WS, Tao J (2007) Bone marrow stromal cells prevent apoptosis of lymphoma cells by upregulation of anti-apoptotic proteins associated with activation of NF-kappaB (RelB/p52) in non-Hodgkin's lymphoma cells. Leukemia 21:1521–1531. doi:10.1038/sj.leu.2404723

    Article  CAS  PubMed  Google Scholar 

  41. Ding W, Nowakowski GS, Knox TR, Boysen JC, Maas ML, Schwager SM, Wu W, Wellik LE, Dietz AB, Ghosh AK et al (2009) Bi-directional activation between mesenchymal stem cells and CLL B-cells: implication for CLL disease progression. Br J Haematol 147:471–483. doi:10.1111/j.1365-2141.2009.07868.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Cols M, Barra CM, He B, Puga I, Xu W, Chiu A, Tam W, Knowles DM, Dillon SR, Leonard JP et al (2012) Stromal endothelial cells establish a bidirectional crosstalk with chronic lymphocytic leukemia cells through the TNF-related factors BAFF, APRIL, and CD40L. J Immunol 188:6071–6083. doi:10.4049/jimmunol.1102066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Perez-Galan P, Roue G, Lopez-Guerra M, Nguyen M, Villamor N, Montserrat E, Shore GC, Campo E, Colomer D (2008) BCL-2 phosphorylation modulates sensitivity to the BH3 mimetic GX15-070 (Obatoclax) and reduces its synergistic interaction with bortezomib in chronic lymphocytic leukemia cells. Leukemia 22:1712–1720. doi:10.1038/leu.2008.175

    Article  CAS  PubMed  Google Scholar 

  44. Faderl S, Rai K, Gribben J, Byrd JC, Flinn IW, O'Brien S, Sheng S, Esseltine DL, Keating MJ (2006) Phase II study of single-agent bortezomib for the treatment of patients with fludarabine-refractory B-cell chronic lymphocytic leukemia. Cancer 107:916–924. doi:10.1002/cncr.22097

    Article  CAS  PubMed  Google Scholar 

  45. Hauer J, Puschner S, Ramakrishnan P, Simon U, Bongers M, Federle C, Engelmann H (2005) TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. Proc Natl Acad Sci U S A 102:2874–2879. doi:10.1073/pnas.0500187102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Bergsagel PL (2009) TRAF3 in B cells: too much, too little, too bad. Blood 113:4481–4482. doi:10.1182/blood-2009-01-199810

    Article  CAS  PubMed  Google Scholar 

  47. Garber K (2007) Gene mutation revelation points to new target for myeloma treatment, studies say. J Natl Cancer Inst 99:1362–1364. doi:10.1093/jnci/djm164

    Article  PubMed  Google Scholar 

  48. Balakrishnan K, Burger JA, Wierda WG, Gandhi V (2009) AT-101 induces apoptosis in CLL B cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance. Blood 113:149–153. doi:10.1182/blood-2008-02-138560

    Article  CAS  PubMed  Google Scholar 

  49. Masood A, Chitta K, Paulus A, Khan AN, Sher T, Ersing N, Miller KC, Manfredi D, Ailawadhi S, Borrelo I et al (2012) Downregulation of BCL2 by AT-101 enhances the antileukaemic effect of lenalidomide both by an immune dependant and independent manner. Br J Haematol 157:59–66. doi:10.1111/j.1365-2141.2011.08984.x

    Article  CAS  PubMed  Google Scholar 

  50. Schrottner P, Leick M, Burger M (2010) The role of chemokines in B cell chronic lymphocytic leukaemia: pathophysiological aspects and clinical impact. Ann Hematol 89:437–446. doi:10.1007/s00277-009-0876-6

    Article  PubMed  Google Scholar 

  51. Burger JA, Burger M, Kipps TJ (1999) Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 94:3658–3667

    CAS  PubMed  Google Scholar 

  52. Kay NE, Shanafelt TD, Strege AK, Lee YK, Bone ND, Raza A (2007) Bone biopsy derived marrow stromal elements rescue chronic lymphocytic leukemia B-cells from spontaneous and drug induced cell death and facilitates an “angiogenic switch”. Leuk Res 31:899–906. doi:10.1016/j.leukres.2006.11.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Guo F, Weih D, Meier E, Weih F (2007) Constitutive alternative NF-kappaB signaling promotes marginal zone B-cell development but disrupts the marginal sinus and induces HEV-like structures in the spleen. Blood 110:2381–2389. doi:10.1182/blood-2007-02-075143

    Article  CAS  PubMed  Google Scholar 

  54. Chiorazzi N, Ferrarini M (2011) Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood 117:1781–1791. doi:10.1182/blood-2010-07-155663

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge Jinlan Pan and Minqing Zhu for excellent technical assistance and suggestions. This work was supported by Jiangsu Provincial Natural Science Foundation of China (F.G., grant no. BK2011306), and National Natural Science Foundation of China (F.G., grant no. 81070405 and 81172433).

Authorship contribution statement

J.J.X performed research, collected, and analyzed data. P.Z. performed research. W.J.W performed research. A.N.S. collected clinical information. F.G. designed and performed research, collected, analyzed and interpreted data, and wrote the manuscript.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aining Sun or Feng Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOC 302 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Zhou, P., Wang, W. et al. RelB, together with RelA, sustains cell survival and confers proteasome inhibitor sensitivity of chronic lymphocytic leukemia cells from bone marrow. J Mol Med 92, 77–92 (2014). https://doi.org/10.1007/s00109-013-1081-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1081-6

Keywords

Navigation