Skip to main content

Advertisement

Log in

FUS-mediated alternative splicing in the nervous system: consequences for ALS and FTLD

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mutations in fused in sarcoma (FUS) in a subset of patients with amyotrophic lateral sclerosis (ALS) linked this DNA/RNA-binding protein to neurodegeneration. Most of the mutations disrupt the nuclear localization signal which strongly suggests a loss-of-function pathomechanism, supported by cytoplasmic inclusions. FUS-positive neuronal cytoplasmic inclusions are also found in a subset of patients with frontotemporal lobar degeneration (FTLD). Here, we discuss recent data on the role of alternative splicing in FUS-mediated pathology in the central nervous system. Several groups have shown that FUS binds broadly to many transcripts in the brain and have also identified a plethora of putative splice targets; however, only ABLIM1, BRAF, Ewing sarcoma protein R1 (EWSR1), microtubule-associated protein tau (MAPT), NgCAM cell adhesion molecule (NRCAM), and netrin G1 (NTNG1) have been identified in at least three of four studies. Gene ontology analysis of all putative targets unanimously suggests a role in axon growth and cytoskeletal organization, consistent with the altered morphology of dendritic spines and axonal growth cones reported upon loss of FUS. Among the axonal targets, MAPT/tau and NTNG1 have been further validated in biochemical studies. The next challenge will be to confirm changes of FUS-mediated alternative splicing in patients and define their precise role in the pathophysiology of ALS and FTLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kwiatkowski TJ, Bosco DA, LeClerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208

    Article  CAS  PubMed  Google Scholar 

  2. Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211

    Article  CAS  PubMed  Google Scholar 

  3. Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132:2922–2931

    Article  PubMed  Google Scholar 

  4. Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7:710–723

    Article  CAS  PubMed  Google Scholar 

  5. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    Article  CAS  PubMed  Google Scholar 

  6. Bird T, Knopman D, VanSwieten J, Rosso S, Feldman H, Tanabe H, Graff-Raford N, Geschwind D, Verpillat P, Hutton M (2003) Epidemiology and genetics of frontotemporal dementia/Pick's disease. Ann Neurol 54:S29–S31

    Article  PubMed  Google Scholar 

  7. Thomas M, Alegre-Abarrategui J, Wade-Martins R (2013) RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum. Brain 136(Pt 5):1345–1360

    Article  PubMed  Google Scholar 

  8. Mackenzie IRA, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007

    Article  CAS  PubMed  Google Scholar 

  9. Rademakers R, Neumann M, Mackenzie IR (2012) Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 8:423–434

    CAS  PubMed  Google Scholar 

  10. Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM, Dickson DW (2011) Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122:137–153

    Article  PubMed  Google Scholar 

  11. Dormann D, Haass C (2013) Fused in sarcoma (FUS): an oncogene goes awry in neurodegeneration. Mol Cell Neurosci. doi:10.1016/j.mcn.2013.03.006

    PubMed  Google Scholar 

  12. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  CAS  PubMed  Google Scholar 

  13. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  14. Neumann M, Bentmann E, Dormann D, Jawaid A, DeJesus-Hernandez M, Ansorge O, Roeber S, Kretzschmar HA, Munoz DG, Kusaka H et al (2011) FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134:2595–2609

    Article  PubMed  Google Scholar 

  15. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Martin JJ et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924

    Article  CAS  PubMed  Google Scholar 

  16. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  PubMed  Google Scholar 

  17. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NiCole A, Flynn H et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  CAS  PubMed  Google Scholar 

  18. Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, Janssens J, Bettens K, Van Cauwenberghe C, Pereson S et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11:54–65

    Article  CAS  PubMed  Google Scholar 

  19. Åman P, Panagopoulos I, Lassen C, Fioretos T, Mencinger M, Toresson H, Höglund M, Forster A, Rabbitts TH, Ron D et al (1996) Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 37:1–8

    Article  PubMed  Google Scholar 

  20. Zinszner H, Sok J, Immanuel D, Yin Y, Ron D (1997) TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J Cell Sci 110:1741–1750

    CAS  PubMed  Google Scholar 

  21. Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, Than ME, Mackenzie IRA, Capell A, Schmid B et al (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt transportin-mediated nuclear import. EMBO J 29:2841–2857

    Article  CAS  PubMed  Google Scholar 

  22. Kato M, Han Tina W, Xie S, Shi K, Du X, Wu Leeju C, Mirzaei H, Goldsmith EJ, Longgood J, Pei J et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767

    Article  CAS  PubMed  Google Scholar 

  23. Hoell JI, Larsson E, Runge S, Nusbaum JD, Duggimpudi S, Farazi TA, Hafner M, Borkhardt A, Sander C, Tuschl T (2011) RNA targets of wild-type and mutant FET family proteins. Nat Struct Mol Biol 18:1428–1431

    Article  CAS  PubMed  Google Scholar 

  24. Hicks GG, Singh N, Nashabi A, Mai S, Bozek G, Klewes L, Arapovic D, White EK, Koury MJ, Oltz EM et al (2000) Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat Genet 24:175–179

    Article  CAS  PubMed  Google Scholar 

  25. Kuroda M, Sok J, Webb L, Baechtold H, Urano F, Yin Y, Chung P, de Rooij DG, Akhmedov A, Ashley T et al (2000) Male sterility and enhanced radiation sensitivity in TLS(−/−) mice. EMBO J 19:453–462

    Article  CAS  PubMed  Google Scholar 

  26. Fujii R, Okabe S, Urushido T, Inoue K, Yoshimura A, Tachibana T, Nishikawa T, Hicks GG, Takumi T (2005) The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr Biol CB 15:587–593

    Article  CAS  Google Scholar 

  27. Orozco D, Tahirovic S, Rentzsch K, Schwenk BM, Haass C, Edbauer D (2012) Loss of fused in sarcoma (FUS) promotes pathological tau splicing. EMBO Rep 13:759–764

    Article  CAS  PubMed  Google Scholar 

  28. Mitchell J, McGoldrick P, Vance C, Hortobagyi T, Sreedharan J, Rogelj B, Tudor E, Smith B, Klasen C, Miller CJ et al (2013) Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol 125(2):273–288

    Article  CAS  PubMed  Google Scholar 

  29. Lanson NA Jr, Pandey UB (2012) FUS-related proteinopathies: lessons from animal models. Brain Res 1462:44–60

    Article  CAS  PubMed  Google Scholar 

  30. Licatalosi DD, Darnell RB (2010) RNA processing and its regulation: global insights into biological networks. Nat Rev Genet 11:75–87

    Article  CAS  PubMed  Google Scholar 

  31. Li Q, Lee J-A, Black DL (2007) Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci 8:819–831

    Article  CAS  PubMed  Google Scholar 

  32. Dredge BK, Polydorides AD, Darnell RB (2001) The splice of life: alternative splicing and neurological disease. Nat Rev Neurosci 2:43–50

    Article  CAS  PubMed  Google Scholar 

  33. Yeo G, Holste D, Kreiman G, Burge C (2004) Variation in alternative splicing across human tissues. Genome Biol 5:R74

    Article  PubMed  Google Scholar 

  34. Wahl MC, Will CL, Lührmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    Article  CAS  PubMed  Google Scholar 

  35. Ishigaki S, Masuda A, Fujioka Y, Iguchi Y, Katsuno M, Shibata A, Urano F, Sobue G, Ohno K (2012) Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions. Sci Rep 2. http://www.nature.com/srep/2012/120724/srep00529/abs/srep00529.html#supplementary-information

  36. Rogelj B, Easton LE, Bogu GK, Stanton LW, Rot G, Curk T, Zupan B, Sugimoto Y, Modic M, Haberman N, Tollervey J, Fujii R, Takumi T, Shaw CE, Ule J (2012) Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci Rep 2. http://www.nature.com/srep/2012/120828/srep00603/abs/srep00603.html#supplementary-information

  37. Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC, Clutario KM, Ling S-C, Liang TY, Mazur C et al (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 15:1488–1497

    Article  CAS  PubMed  Google Scholar 

  38. Nakaya TA, Panagiotis M, Manolis C, Alexandra M, Zissimos (2013) FUS regulates genes coding for RNA-binding proteins in neurons by binding to their highly conserved introns. RNA 19(4):498–509

    Article  CAS  PubMed  Google Scholar 

  39. Meissner M, Lopato S, Gotzmann J, Sauermann G, Barta A (2003) Proto-oncoprotein TLS/FUS is associated to the nuclear matrix and complexed with splicing factors PTB, SRm160, and SR proteins. Exp Cell Res 283:184–195

    Article  CAS  PubMed  Google Scholar 

  40. Yang L, Embree LJ, Tsai S, Hickstein DD (1998) Oncoprotein TLS interacts with serine-arginine proteins involved in RNA splicing. J Biol Chem 273:27761–27764

    Article  CAS  PubMed  Google Scholar 

  41. Gerbino V, Carrì MT, Cozzolino M, Achsel T (2013) Mislocalised FUS mutants stall spliceosomal snRNPs in the cytoplasm. Neurobiol Dis 55:120–128

    Article  CAS  PubMed  Google Scholar 

  42. Braunschweig U, Gueroussov S, Plocik AM, Graveley Brenton R, Blencowe Benjamin J (2013) Dynamic integration of splicing within gene regulatory pathways. Cell 152:1252–1269

    Article  CAS  PubMed  Google Scholar 

  43. Schwartz JC, Ebmeier CC, Podell ER, Heimiller J, Taatjes DJ, Cech TR (2012) FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2. Genes Dev 26:2690–2695

    Article  CAS  PubMed  Google Scholar 

  44. Lerga A, Hallier M, Delva L, Orvain C, Gallais I, Marie J, Moreau-Gachelin F (2001) Identification of an RNA binding specificity for the potential splicing factor TLS. J Biol Chem 276:6807–6816

    Article  CAS  PubMed  Google Scholar 

  45. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A et al (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917

    Article  CAS  PubMed  Google Scholar 

  46. Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793

    Article  CAS  PubMed  Google Scholar 

  47. Lorson CL, Androphy EJ (1998) The domain encoded by exon 2 of the survival motor neuron protein mediates nucleic acid binding. Hum Mol Genet 7:1269–1275

    Article  CAS  PubMed  Google Scholar 

  48. Colombrita C, Onesto E, Megiorni F, Pizzuti A, Baralle FE, Buratti E, Silani V, Ratti A (2012) TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J Biol Chem 287:15635–15647

    Article  CAS  PubMed  Google Scholar 

  49. Dichmann DS, Harland RM (2012) fus/TLS orchestrates splicing of developmental regulators during gastrulation. Genes Dev 26:1351–1363

    Article  CAS  PubMed  Google Scholar 

  50. König J, Zarnack K, Luscombe NM, Ule J (2012) Protein–RNA interactions: new genomic technologies and perspectives. Nat Rev Genet 13:77–83

    Article  PubMed  CAS  Google Scholar 

  51. Buratti E, Romano M, Baralle FE (2013) TDP-43 high throughput screening analyses in neurodegeneration: advantages and pitfalls. Mol Cell Neurosci. doi:10.1016/j.mcn.2013.03.001

    Google Scholar 

  52. Sephton CF, Cenik C, Kucukural A, Dammer EB, Cenik B, Han Y, Dewey CM, Roth FP, Herz J, Peng J et al (2011) Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem 286:1204–1215

    Article  CAS  PubMed  Google Scholar 

  53. Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, Konig J, Hortobagyi T, Nishimura AL, Zupunski V et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458

    Article  CAS  PubMed  Google Scholar 

  54. Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, Ling S-C, Sun E, Wancewicz E, Mazur C et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14:459–468

    Article  CAS  PubMed  Google Scholar 

  55. Goedert M, Spillantini M (2011) Pathogenesis of the tauopathies. J Mol Neurosci 45:425–431

    Article  CAS  PubMed  Google Scholar 

  56. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33:95–130

    Article  PubMed  Google Scholar 

  57. Lee VM-Y, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  58. Panda D, Samuel JC, Massie M, Feinstein SC, Wilson L (2003) Differential regulation of microtubule dynamics by three- and four-repeat tau: implications for the onset of neurodegenerative disease. Proc Natl Acad Sci 100:9548–9553

    Article  CAS  PubMed  Google Scholar 

  59. Brunden KR, Trojanowski JQ, Lee VMY (2008) Evidence that Non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments. J Alzheimers Dis 14:393–399

    PubMed  Google Scholar 

  60. de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT (2010) Caspase activation precedes and leads to tangles. Nature 464:1201–1204

    Article  PubMed  CAS  Google Scholar 

  61. Tobin JE, Latourelle JC, Lew MF, Klein C, Suchowersky O, Shill HA, Golbe LI, Mark MH, Growdon JH, Wooten GF et al (2008) Haplotypes and gene expression implicate the MAPT region for Parkinson disease: the GenePD study. Neurology 71:28–34

    Article  CAS  PubMed  Google Scholar 

  62. Caffrey TM, Joachim C, Paracchini S, Esiri MM, Wade-Martins R (2006) Haplotype-specific expression of exon 10 at the human MAPT locus. Hum Mol Genet 15:3529–3537

    Article  CAS  PubMed  Google Scholar 

  63. Williams-Gray CH, Evans JR, Goris A, Foltynie T, Ban M, Robbins TW, Brayne C, Kolachana BS, Weinberger DR, Sawcer SJ et al (2009) The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort. Brain 132:2958–2969

    Article  PubMed  Google Scholar 

  64. Skipper L, Wilkes K, Toft M, Baker M, Lincoln S, Hulihan M, Ross OA, Hutton M, Aasly J, Farrer M (2004) Linkage disequilibrium and association of MAPT H1 in Parkinson disease. Am J Hum Genet 75:669–677

    Article  CAS  PubMed  Google Scholar 

  65. Sundar PD, Yu C-E, Sieh W, Steinbart E, Garruto RM, Oyanagi K, Craig U-K, Bird TD, Wijsman EM, Galasko DR et al (2007) Two sites in the MAPT region confer genetic risk for Guam ALS/PDC and dementia. Hum Mol Genet 16:295–306

    Article  CAS  PubMed  Google Scholar 

  66. Mawal-Dewan M, Schmidt LM, Balin B, Perl DP, Lee VM-Y, Trojanowski JQ (1996) Identification of phosphorylation sites in PHF-TAU from patients with Guam amyotrophic lateral sclerosis/parkinsonism-dementia complex. J Neuropathol Exp Neurol 55:1051–1059

    CAS  PubMed  Google Scholar 

  67. Urwin H, Josephs K, Rohrer J, Mackenzie I, Neumann M, Authier A, Seelaar H, Swieten J, Brown J, Johannsen P et al (2010) FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathol 120:33–41

    Article  PubMed  Google Scholar 

  68. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  CAS  PubMed  Google Scholar 

  69. Eastwood SL, Harrison PJ (2007) Decreased mRNA expression of netrin-G1 and netrin-G2 in the temporal lobe in schizophrenia and bipolar disorder. Neuropsychopharmacology 33:933–945

    Article  PubMed  CAS  Google Scholar 

  70. Yin Y, Miner JH, Sanes JR (2002) Laminets: laminin- and netrin-related genes expressed in distinct neuronal subsets. Mol Cell Neurosci 19:344–358

    Article  CAS  PubMed  Google Scholar 

  71. Meerabux JMA, Ohba H, Fukasawa M, Suto Y, Aoki-Suzuki M, Nakashiba T, Nishimura S, Itohara S, Yoshikawa T (2005) Human netrin-G1 isoforms show evidence of differential expression. Genomics 86:112–116

    Article  CAS  PubMed  Google Scholar 

  72. Cirulli V, Yebra M (2007) Netrins: beyond the brain. Nat Rev Mol Cell Biol 8:296–306

    Article  CAS  PubMed  Google Scholar 

  73. Aoki-Suzuki M, Yamada K, Meerabux J, Iwayama-Shigeno Y, Ohba H, Iwamoto K, Takao H, Toyota T, Suto Y, Nakatani N et al (2005) A family-based association study and gene expression analyses of netrin-G1 and -G2 genes in schizophrenia. Biol Psychiatry 57:382–393

    Article  CAS  PubMed  Google Scholar 

  74. Lin L, Lesnick TG, Maraganore DM, Isacson O (2009) Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics. Trends Neurosci 32:142–149

    Article  CAS  PubMed  Google Scholar 

  75. Roof DJ, Hayes A, Adamian M, Chishti AH, Li T (1997) Molecular characterization of abLIM, a novel actin-binding and double zinc finger protein. J Cell Biol 138:575–588

    Article  CAS  PubMed  Google Scholar 

  76. Lundquist EA, Herman RK, Shaw JE, Bargmann CI (1998) UNC-115, a conserved protein with predicted LIM and actin-binding domains, mediates axon guidance in C. Elegans. Neuron 21:385–392

    Article  CAS  PubMed  Google Scholar 

  77. Erkman L, Yates PA, McLaughlin T, McEvilly RJ, Whisenhunt T, O'Connell SM, Krones AI, Kirby MA, Rapaport DH, Bermingham JR et al (2000) A POU domain transcription factor dependent program regulates axon pathfinding in the vertebrate visual system. Neuron 28:779–792

    Article  CAS  PubMed  Google Scholar 

  78. Sakurai T (2012) The role of NrCAM in neural development and disorders—beyond a simple glue in the brain. Mol Cell Neurosci 49:351–363

    Article  CAS  PubMed  Google Scholar 

  79. Wang B, Williams H, Du J-S, Terrett J, Kenwrick S (1998) Alternative splicing of human NrCAM in neural and nonneural tissues. Mol Cell Neurosci 10:287–295

    Article  CAS  Google Scholar 

  80. Barnier JV, Papin C, Eychène A, Lecoq O, Calothy G (1995) The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression. J Biol Chem 270:23381–23389

    Article  CAS  PubMed  Google Scholar 

  81. Frebel K, Wiese S (2006) Signalling molecules essential for neuronal survival and differentiation. Biochem Soc Trans 34(Pt 6):1287–1290

    CAS  PubMed  Google Scholar 

  82. Wiese S, Pei G, Karch C, Troppmair J, Holtmann B, Rapp UR, Sendtner M (2001) Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons. Nat Neurosci 4:137–142

    Article  CAS  PubMed  Google Scholar 

  83. Zhong J, Li X, McNamee C, Chen AP, Baccarini M, Snider WD (2007) Raf kinase signaling functions in sensory neuron differentiation and axon growth in vivo. Nat Neurosci 10:598–607

    Article  CAS  PubMed  Google Scholar 

  84. Wu C-H, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, Lowe P, Koppers M, McKenna-Yasek D, Baron DM et al (2012) Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488:499–503

    Article  CAS  PubMed  Google Scholar 

  85. Al-Chalabi A, Andersen PM, Nilsson P, Chioza B, Andersson JL, Russ C, Shaw CE, Powell JF, Nigel Leigh P (1999) Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet 8:157–164

    Article  CAS  PubMed  Google Scholar 

  86. Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240

    Article  PubMed  Google Scholar 

  87. Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71:35–48

    Article  CAS  PubMed  Google Scholar 

  88. Dormann D, Haass C (2011) TDP-43 and FUS: a nuclear affair. Trends Neurosci 34:339–348

    Article  CAS  PubMed  Google Scholar 

  89. Johnson R (2012) Long non-coding RNAs in Huntington's disease neurodegeneration. Neurobiol Dis 46:245–254

    Article  CAS  PubMed  Google Scholar 

  90. Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, Devidze N, Kreitzer AC, Mucke L (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16:613–621

    Article  CAS  PubMed  Google Scholar 

  91. Vourekas A, Zheng Q, Alexiou P, Maragkakis M, Kirino Y, Gregory BD, Mourelatos Z (2012) Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat Struct Mol Biol 19:773–781

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank D. Dormann, B. Schmid, S. Tahirovic, J. McCarter, E. Bentmann, K. Strecker, B. Schwenk, and J. Banzhaf for critically reading the manuscript.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Edbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orozco, D., Edbauer, D. FUS-mediated alternative splicing in the nervous system: consequences for ALS and FTLD. J Mol Med 91, 1343–1354 (2013). https://doi.org/10.1007/s00109-013-1077-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1077-2

Keywords

Navigation