Journal of Molecular Medicine

, Volume 91, Issue 8, pp 907–916 | Cite as

Visualizing CaMKII and CaM activity: a paradigm of compartmentalized signaling

Review

Abstract

Calcium (Ca2+) has long been recognized as a crucial intracellular messenger attaining stimuli-specific cellular outcomes via localized signaling. Ca2+-binding proteins, such as calmodulin (CaM), and its target proteins are key to the segregation and refinement of these Ca2+-dependent signaling events. This review not only summarizes the recent technological advances enabling the study of subcellular Ca2+-CaM and Ca2+-CaM-dependent protein kinase (CaMKII) signaling events but also highlights the outstanding challenges in the field.

Keywords

Calcium Calmodulin Ca-calmodulin-dependent protein kinase II (CaMKII) 

References

  1. 1.
    Bers DM (2001) Excitation-contraction coupling and cardiac contractile force, 2nd edn. Kluwer, DordrechtCrossRefGoogle Scholar
  2. 2.
    Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49CrossRefPubMedGoogle Scholar
  3. 3.
    Makarewich CA, Correll RN, Gao H, Zhang H, Yang B, Berretta RM, Rizzo V, Molkentin JD, Houser SR (2012) A caveolae-targeted L-type Ca2+ channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110:669–674CrossRefPubMedGoogle Scholar
  4. 4.
    Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116:675–682CrossRefPubMedGoogle Scholar
  5. 5.
    Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 A resolution. J Mol Biol 204:191–204CrossRefPubMedGoogle Scholar
  6. 6.
    Chattopadhyaya R, Meador WE, Means AR, Quiocho FA (1992) Calmodulin structure refined at 1.7 A resolution. J Mol Biol 228:1177–1192CrossRefPubMedGoogle Scholar
  7. 7.
    Black DJ, Leonard J, Persechini A (2006) Biphasic Ca2+-dependent switching in a calmodulin-IQ domain complex. Biochemistry 45:6987–6995CrossRefPubMedGoogle Scholar
  8. 8.
    Putkey JA, Kleerekoper Q, Gaertner TR, Waxham MN (2003) A new role for IQ motif proteins in regulating calmodulin function. J Biol Chem 278:49667–49670CrossRefPubMedGoogle Scholar
  9. 9.
    Faas GC, Mody I (2012) Measuring the kinetics of calcium binding proteins with flash photolysis. Biochim Biophys Acta 1820:1195–1204CrossRefPubMedGoogle Scholar
  10. 10.
    Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108:739–742CrossRefPubMedGoogle Scholar
  11. 11.
    Black DJ, Persechini A (2011) In calmodulin-IQ domain complexes, the Ca2+-free and Ca2+-bound forms of the calmodulin C-lobe direct the N-lobe to different binding sites. Biochemistry 50:10061–10068CrossRefPubMedGoogle Scholar
  12. 12.
    O’Connell DJ, Bauer M, Linse S, Cahill DJ (2011) Probing calmodulin protein–protein interactions using high-content protein arrays. Methods Mol Biol 785:289–303CrossRefPubMedGoogle Scholar
  13. 13.
    James P, Vorherr T, Carafoli E (1995) Calmodulin-binding domains: just two faced or multi-faceted? Trends Biochem Sci 20:38–42CrossRefPubMedGoogle Scholar
  14. 14.
    Vogel HJ (1994) Calmodulin: a versatile calcium mediator protein. Biochem Cell Biol 72:357–376CrossRefPubMedGoogle Scholar
  15. 15.
    Black DJ, LaMartina D, Persechini A (2009) The IQ domains in neuromodulin and PEP19 represent two major functional classes. Biochemistry 48:11766–11772CrossRefPubMedGoogle Scholar
  16. 16.
    Stemmer PM, Klee CB (1994) Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry 33:6859–6866CrossRefPubMedGoogle Scholar
  17. 17.
    Peterson BZ, Lee JS, Mulle JG, Wang Y, de Leon M, Yue DT (2000) Critical determinants of Ca2+-dependent inactivation within an EF-hand motif of L-type Ca2+ channels. Biophys J 78:1906–1920CrossRefPubMedGoogle Scholar
  18. 18.
    Balshaw DM, Xu L, Yamaguchi N, Pasek DA, Meissner G (2001) Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J Biol Chem 276:20144–20153CrossRefPubMedGoogle Scholar
  19. 19.
    Patel S, Morris SA, Adkins CE, O’Beirne G, Taylor CW (1997) Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2+ mobilization. Proc Natl Acad Sci 94:11627–11632CrossRefPubMedGoogle Scholar
  20. 20.
    Maier LS, Bers DM (2002) Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. J Mol Cell Cardiol 34:919–939CrossRefPubMedGoogle Scholar
  21. 21.
    Mori MX, Imai Y, Itsuki K, Inoue R (2011) Quantitative measurement of Ca2+-dependent calmodulin-target binding by Fura-2 and CFP and YFP FRET imaging in living cells. Biochemistry 50:4685–4696CrossRefPubMedGoogle Scholar
  22. 22.
    Guo T, Fruen BR, Nitu FR, Nguyen TD, Yang Y, Cornea RL, Bers DM (2011) FRET detection of calmodulin binding to the cardiac RyR2 calcium release channel. Biophys J 101:2170–2177CrossRefPubMedGoogle Scholar
  23. 23.
    Oda T, Yang Y, Nitu FR, Svensson B, Lu X, Fruen BR, Cornea RL, Bers DM (2013) Binding of RyR2 "unzipping" peptide in cardiomyocytes activates RyR2 and reciprocally inhibits calmodulin binding. Circ Res 112:487–497CrossRefPubMedGoogle Scholar
  24. 24.
    Maier LS, Ziolo MT, Bossuyt J, Persechini A, Mestril R, Bers DM (2006) Dynamic changes in free Ca-calmodulin levels in adult cardiac myocytes. J Mol Cell Cardiol 41:451–458CrossRefPubMedGoogle Scholar
  25. 25.
    Persechini A, Stemmer PM (2002) Calmodulin is a limiting factor in the cell. Trends Cardiovasc Med 12:32–37CrossRefPubMedGoogle Scholar
  26. 26.
    Wu X, Bers DM (2007) Free and bound intracellular calmodulin measurements in cardiac myocytes. Cell Calcium 41:353–364CrossRefPubMedGoogle Scholar
  27. 27.
    Hryshko LV, Bers DM (1990) Ca current facilitation during postrest recovery depends on Ca entry. Am J Physiol 259:H951–961PubMedGoogle Scholar
  28. 28.
    Grueter CE, Abiria SA, Dzhura I, Wu Y, Ham AJ, Mohler PJ, Anderson ME, Colbran RJ (2006) L-type Ca2+ channel facilitation mediated by phosphorylation of the beta subunit by CaMKII. Mol Cell 23:641–650CrossRefPubMedGoogle Scholar
  29. 29.
    Hudmon A, Schulman H, Kim J, Maltez JM, Tsien RW, Pitt GS (2005) CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 171:537–547CrossRefPubMedGoogle Scholar
  30. 30.
    Berger I, Bieniossek C, Schaffitzel C, Hassler M, Santelli E, Richmond TJ (2003) Direct interaction of Ca2+/calmodulin inhibits histone deacetylase 5 repressor core binding to myocyte enhancer factor 2. J Biol Chem 278:17625–17635CrossRefPubMedGoogle Scholar
  31. 31.
    Mermelstein PG, Deisseroth K, Dasgupta N, Isaksen AL, Tsien RW (2001) Calmodulin priming: nuclear translocation of a calmodulin complex and the memory of prior neuronal activity. Proc Natl Acad Sci 98:15342–15347CrossRefPubMedGoogle Scholar
  32. 32.
    Teruel MN, Chen W, Persechini A, Meyer T (2000) Differential codes for free Ca2+-calmodulin signals in nucleus and cytosol. Curr Biol 10:86–94CrossRefPubMedGoogle Scholar
  33. 33.
    Thorogate R, Torok K (2004) Ca2+-dependent and -independent mechanisms of calmodulin nuclear translocation. J Cell Sci 117:5923–5936CrossRefPubMedGoogle Scholar
  34. 34.
    Jeck CD, Zimmermann R, Schaper J, Schaper W (1994) Decreased expression of calmodulin mRNA in human end-stage heart failure. J Mol Cell Cardiol 26:99–107CrossRefPubMedGoogle Scholar
  35. 35.
    Cortes R, Rivera M, Rosello-Lleti E, Martinez-Dolz L, Almenar L, Azorin I, Lago F, Gonzalez-Juanatey JR, Portoles M (2012) Differences in MEF2 and NFAT transcriptional pathways according to human heart failure aetiology. PLoS One 7:e30915CrossRefPubMedGoogle Scholar
  36. 36.
    Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97:1314–1322CrossRefPubMedGoogle Scholar
  37. 37.
    Gangopadhyay JP, Ikemoto N (2010) Intracellular translocation of calmodulin and Ca2+/calmodulin-dependent protein kinase II during the development of hypertrophy in neonatal cardiomyocytes. Biochem Biophys Res Commun 396:515–521CrossRefPubMedGoogle Scholar
  38. 38.
    Saucerman JJ, Bers DM (2012) Calmodulin binding proteins provide domains of local Ca2+ signaling in cardiac myocytes. J Mol Cell Cardiol 52:312–316CrossRefPubMedGoogle Scholar
  39. 39.
    Cohen P, Klee CB (1988) Calmodulin. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    Hubbard MJ, Klee CB (1987) Calmodulin binding by calcineurin. Ligand-induced renaturation of protein immobilized on nitrocellulose. J Biol Chem 262:15062–15070PubMedGoogle Scholar
  41. 41.
    Davis BA, Schwartz A, Samaha FJ, Kranias EG (1983) Regulation of cardiac sarcoplasmic reticulum calcium transport by calcium-calmodulin-dependent phosphorylation. J Biol Chem 258:13587–13591PubMedGoogle Scholar
  42. 42.
    Persechini A, Cronk B (1999) The relationship between the free concentrations of Ca2+ and Ca2+-calmodulin in intact cells. J Biol Chem 274:6827–6830CrossRefPubMedGoogle Scholar
  43. 43.
    Romoser VA, Hinkle PM, Persechini A (1997) Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. J Biol Chem 272:13270–13274CrossRefPubMedGoogle Scholar
  44. 44.
    Tran QK, Black DJ, Persechini A (2003) Intracellular coupling via limiting calmodulin. J Biol Chem 278:24247–24250CrossRefPubMedGoogle Scholar
  45. 45.
    Tran QK, Black DJ, Persechini A (2005) Dominant affectors in the calmodulin network shape the time courses of target responses in the cell. Cell Calcium 37:541–553CrossRefPubMedGoogle Scholar
  46. 46.
    Song Q, Saucerman JJ, Bossuyt J, Bers DM (2008) Differential integration of Ca2+-calmodulin signal in intact ventricular myocytes at low and high affinity Ca2+-calmodulin targets. J Biol Chem 283:31531–31540CrossRefPubMedGoogle Scholar
  47. 47.
    Saucerman JJ, Bers DM (2008) Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca2+ in cardiac myocytes. Biophys J 95:4597–4612CrossRefPubMedGoogle Scholar
  48. 48.
    Tavi P, Pikkarainen S, Ronkainen J, Niemela P, Ilves M, Weckstrom M, Vuolteenaho O, Bruton J, Westerblad H, Ruskoaho H (2004) Pacing-induced calcineurin activation controls cardiac Ca2+ signalling and gene expression. J Physiol 554:309–320CrossRefPubMedGoogle Scholar
  49. 49.
    Colella M, Grisan F, Robert V, Turner JD, Thomas AP, Pozzan T (2008) Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT as Ca2+ signal integrators. Proc Natl Acad Sci U S A 105:2859–2864CrossRefPubMedGoogle Scholar
  50. 50.
    Tandan S, Wang Y, Wang TT, Jiang N, Hall DD, Hell JW, Luo X, Rothermel BA, Hill JA (2009) Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel. Circ Res 105:51–60CrossRefPubMedGoogle Scholar
  51. 51.
    Banyasz T, Szentandrassy N, Toth A, Nanasi PP, Magyar J, Chen-Izu Y (2011) Cardiac calmodulin kinase: a potential target for drug design. Curr Med Chem 18:3707–3713CrossRefPubMedGoogle Scholar
  52. 52.
    Dominguez-Rodriguez A, Ruiz-Hurtado G, Benitah JP, Gomez AM (2012) The other side of cardiac Ca2+ signaling: transcriptional control. Front Physiol 3:452CrossRefPubMedGoogle Scholar
  53. 53.
    Erickson JR, He BJ, Grumbach IM, Anderson ME (2011) CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 91:889–915CrossRefPubMedGoogle Scholar
  54. 54.
    Fischer TH, Neef S, Maier LS (2013) The Ca-calmodulin dependent kinase II: a promising target for future antiarrhythmic therapies? J Mol Cell Cardiol 58:182–187CrossRefPubMedGoogle Scholar
  55. 55.
    Maier LS (2012) Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the heart. Adv Exp Med Biol 740:685–702CrossRefPubMedGoogle Scholar
  56. 56.
    Rokita AG, Anderson ME (2012) New therapeutic targets in cardiology: arrhythmias and Ca2+/calmodulin-dependent kinase II (CaMKII). Circulation 126:2125–2139CrossRefPubMedGoogle Scholar
  57. 57.
    Singh MV, Anderson ME (2011) Is CaMKII a link between inflammation and hypertrophy in heart? J Mol Med (Berl) 89:537–543CrossRefGoogle Scholar
  58. 58.
    Swaminathan PD, Purohit A, Hund TJ, Anderson ME (2012) Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 110:1661–1677CrossRefPubMedGoogle Scholar
  59. 59.
    Tombes RM, Faison MO, Turbeville JM (2003) Organization and evolution of multifunctional Ca2+/CaM-dependent protein kinase genes. Gene 322:17–31CrossRefPubMedGoogle Scholar
  60. 60.
    Hudmon A, Schulman H (2002) Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510CrossRefPubMedGoogle Scholar
  61. 61.
    Lantsman K, Tombes RM (2005) CaMK-II oligomerization potential determined using CFP/YFP FRET. Biochim Biophys Acta 1746:45–54CrossRefPubMedGoogle Scholar
  62. 62.
    Chao LH, Pellicena P, Deindl S, Barclay LA, Schulman H, Kuriyan J (2010) Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation. Nat Struct Mol Biol 17:264–272CrossRefPubMedGoogle Scholar
  63. 63.
    De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227–230CrossRefPubMedGoogle Scholar
  64. 64.
    Hoffman L, Stein RA, Colbran RJ, McHaourab HS (2011) Conformational changes underlying calcium/calmodulin-dependent protein kinase II activation. EMBO J 30:1251–1262CrossRefPubMedGoogle Scholar
  65. 65.
    Schworer CM, Colbran RJ, Keefer JR, Soderling TR (1988) Ca2+/calmodulin-dependent protein kinase II. Identification of a regulatory autophosphorylation site adjacent to the inhibitory and calmodulin-binding domains. J Biol Chem 263:13486–13489PubMedGoogle Scholar
  66. 66.
    Rellos P, Pike AC, Niesen FH, Salah E, Lee WH, von Delft F, Knapp S (2010) Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. PLoS Biol 8:e1000426CrossRefPubMedGoogle Scholar
  67. 67.
    Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474CrossRefPubMedGoogle Scholar
  68. 68.
    Liu XB, Murray KD (2012) Neuronal excitability and calcium/calmodulin-dependent protein kinase type II: location, location, location. Epilepsia 53(Suppl 1):45–52CrossRefPubMedGoogle Scholar
  69. 69.
    Colbran RJ (2004) Targeting of calcium/calmodulin-dependent protein kinase II. Biochem J 378:1–16CrossRefPubMedGoogle Scholar
  70. 70.
    Skelding KA, Rostas JA (2009) Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment. Neurochem Res 34:1792–1804CrossRefPubMedGoogle Scholar
  71. 71.
    Edman CF, Schulman H (1994) Identification and characterization of delta B-CaM kinase and delta C-CaM kinase from rat heart, two new multifunctional Ca2+/calmodulin-dependent protein kinase isoforms. Biochim Biophys Acta 1221:89–101CrossRefPubMedGoogle Scholar
  72. 72.
    Srinivasan M, Edman CF, Schulman H (1994) Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J Cell Biol 126:839–852CrossRefPubMedGoogle Scholar
  73. 73.
    Ramirez MT, Zhao XL, Schulman H, Brown JH (1997) The nuclear deltaB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem 272:31203–31208CrossRefPubMedGoogle Scholar
  74. 74.
    Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH (2003) The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92:912–919CrossRefPubMedGoogle Scholar
  75. 75.
    Zhang T, Johnson EN, Gu Y, Morissette MR, Sah VP, Gigena MS, Belke DD, Dillmann WH, Rogers TB, Schulman H et al (2002) The cardiac-specific nuclear delta(B) isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem 277:1261–1267CrossRefPubMedGoogle Scholar
  76. 76.
    Wagner S, Dybkova N, Rasenack EC, Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T, Hasenfuss G, Brown JH et al (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na + channels. J Clin Invest 116:3127–3138CrossRefPubMedGoogle Scholar
  77. 77.
    Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM (2003) Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92:904–911CrossRefPubMedGoogle Scholar
  78. 78.
    Mishra S, Gray CB, Miyamoto S, Bers DM, Brown JH (2011) Location matters: clarifying the concept of nuclear and cytosolic CaMKII subtypes. Circ Res 109:1354–1362CrossRefPubMedGoogle Scholar
  79. 79.
    Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N, Chang S, Ling H, Bers DM, Maier LS et al (2007) CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem 282:35078–35087CrossRefPubMedGoogle Scholar
  80. 80.
    Zhu W, Woo AY, Yang D, Cheng H, Crow MT, Xiao RP (2007) Activation of CaMKIIdeltaC is a common intermediate of diverse death stimuli-induced heart muscle cell apoptosis. J Biol Chem 282:10833–10839CrossRefPubMedGoogle Scholar
  81. 81.
    Peng W, Zhang Y, Zheng M, Cheng H, Zhu W, Cao CM, Xiao RP (2010) Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ Res 106:102–110CrossRefPubMedGoogle Scholar
  82. 82.
    Little GH, Saw A, Bai Y, Dow J, Marjoram P, Simkhovich B, Leeka J, Kedes L, Kloner RA, Poizat C (2009) Critical role of nuclear calcium/calmodulin-dependent protein kinase II deltaB in cardiomyocyte survival in cardiomyopathy. J Biol Chem 284:24857–24868CrossRefPubMedGoogle Scholar
  83. 83.
    Mishra S, Ling H, Grimm M, Zhang T, Bers DM, Brown JH (2010) Cardiac hypertrophy and heart failure development through Gq and CaM kinase II signaling. J Cardiovasc Pharmacol 56:598–603CrossRefPubMedGoogle Scholar
  84. 84.
    Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H (1995) Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem 270:2074–2081CrossRefPubMedGoogle Scholar
  85. 85.
    Bare DJ, Kettlun CS, Liang M, Bers DM, Mignery GA (2005) Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem 280:15912–15920CrossRefPubMedGoogle Scholar
  86. 86.
    Joiner ML, Koval OM, Li J, He BJ, Allamargot C, Gao Z, Luczak ED, Hall DD, Fink BD, Chen B et al (2012) CaMKII determines mitochondrial stress responses in heart. Nature 491:269–273CrossRefPubMedGoogle Scholar
  87. 87.
    Zhang T, Guo T, Mishra S, Dalton ND, Kranias EG, Peterson KL, Bers DM, Brown JH (2010) Phospholamban ablation rescues sarcoplasmic reticulum Ca2+ handling but exacerbates cardiac dysfunction in CaMKIIdelta(C) transgenic mice. Circ Res 106:354–362CrossRefPubMedGoogle Scholar
  88. 88.
    Diviani D, Dodge-Kafka KL, Li J, Kapiloff MS (2011) A-kinase anchoring proteins: scaffolding proteins in the heart. Am J Physiol Heart Circ Physiol 301:H1742–1753CrossRefPubMedGoogle Scholar
  89. 89.
    Singh P, Salih M, Tuana BS (2009) Alpha-kinase anchoring protein alphaKAP interacts with SERCA2A to spatially position Ca2+/calmodulin-dependent protein kinase II and modulate phospholamban phosphorylation. J Biol Chem 284:28212–28221CrossRefPubMedGoogle Scholar
  90. 90.
    Jalan-Sakrikar N, Bartlett RK, Baucum AJ 2nd, Colbran RJ (2012) Substrate-selective and calcium-independent activation of CaMKII by alpha-actinin. J Biol Chem 287:15275–15283CrossRefPubMedGoogle Scholar
  91. 91.
    Takao K, Okamoto K, Nakagawa T, Neve RL, Nagai T, Miyawaki A, Hashikawa T, Kobayashi S, Hayashi Y (2005) Visualization of synaptic Ca2+ /calmodulin-dependent protein kinase II activity in living neurons. J Neurosci 25:3107–3112CrossRefPubMedGoogle Scholar
  92. 92.
    Erickson JR, Patel R, Ferguson A, Bossuyt J, Bers DM (2011) Fluorescence resonance energy transfer-based sensor Camui provides new insight into mechanisms of calcium/calmodulin-dependent protein kinase II activation in intact cardiomyocytes. Circ Res 109:729–738CrossRefPubMedGoogle Scholar
  93. 93.
    Kwok S, Lee C, Sanchez SA, Hazlett TL, Gratton E, Hayashi Y (2008) Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity. Biochem Biophys Res Commun 369:519–525CrossRefPubMedGoogle Scholar
  94. 94.
    Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ et al (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012CrossRefPubMedGoogle Scholar
  95. 95.
    Zhang J, Allen MD (2007) FRET-based biosensors for protein kinases: illuminating the kinome. Mol Biosyst 3:759–765CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of California, DavisDavisUSA

Personalised recommendations