Skip to main content

Advertisement

Log in

Cannabinoid receptor 1 inhibition improves cardiac function and remodelling after myocardial infarction and in experimental metabolic syndrome

Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The cannabinoid receptors, CB1 and CB2, are expressed in the heart, but their role under pathological conditions remains controversial. This study examined the effect of CB1 receptor blockade on cardiovascular functions after experimental MI and in experimental metabolic syndrome. MI was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with the CB1 receptor antagonist rimonabant (10 mg/kg i.p. daily) started 7 days before or 6 h after MI and continued for 6 weeks. Haemodynamic parameters were measured via echocardiography and intracardiac Samba catheter. CB1 blockade improved systolic and diastolic heart function, decreased cardiac collagen and hydroxyproline content and down-regulated TGF-β1. Additionally, rimonabant decreased arterial stiffness, normalised QRS complex duration and reduced brain natriuretic peptide levels in serum. In primary cardiac fibroblasts, rimonabant decreased MMP-9 activity and TGF-β1 expression. Furthermore, rimonabant improved depressed systolic function of spontaneously hypertensive obese rats and reduced weight gain. Blocking of CB1 receptor with rimonabant improves cardiac functions in the early and late stages after MI, decreases arterial stiffness and reduces cardiac remodelling. Rimonabant also has cardioprotective actions in rats characterised by the metabolic syndrome. Inhibition of proteolysis and TGF-β1 expression and reduced collagen content by rimonabant may attenuate destruction of the extracellular matrix and decrease fibrosis after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Tamargo J, López-Sendón J (2011) Novel therapeutic targets for the treatment of heart failure. Nat Rev Drug Discov 10(7):536–555

    Article  PubMed  CAS  Google Scholar 

  2. De Petrocellis L, Cascio MG, Di Marzo V (2004) The endocannabinoid system: a general view and latest additions. Br J Pharmacol 141(5):765–774

    Article  PubMed  Google Scholar 

  3. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564

    Article  PubMed  CAS  Google Scholar 

  4. Pacher P, Mukhopadhyay P, Mohanraj R, Godlewski G, Bátkai S, Kunos G (2008) Modulation of the endocannabinoid system in cardiovascular disease: therapeutic potential and limitations. Hypertension 52(4):601–607

    Article  PubMed  CAS  Google Scholar 

  5. Després J-P, Golay A, Sjöström L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353(20):2121–2134

    Article  PubMed  Google Scholar 

  6. Felder CC, Nielsen A, Briley EM, Palkovits M, Priller J, Axelrod J, Nguyen DN, Richardson JM, Riggin RM, Koppel GA et al (1996) Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat. FEBS Lett 393(2–3):231–235

    Article  PubMed  CAS  Google Scholar 

  7. Bonz A, Laser M, Küllmer S, Kniesch S, Babin-Ebell J, Popp V, Ertl G, Wagner JA (2003) Cannabinoids acting on CB1 receptors decrease contractile performance in human atrial muscle. J Cardiovasc Pharmacol 41(4):657–664

    Article  PubMed  CAS  Google Scholar 

  8. Gebremedhin D, Lange AR, Campbell WB, Hillard CJ, Harder DR (1999) Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Physiol 276(6 Pt 2):H2085–H2093

    PubMed  CAS  Google Scholar 

  9. Liu J, Gao B, Mirshahi F, Sanyal AJ, Khanolkar AD, Makriyannis A, Kunos G (2000) Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem J 346(Pt 3):835–840

    Article  PubMed  CAS  Google Scholar 

  10. Sterin-Borda L, Del Zar CF, Borda E (2005) Differential CB1 and CB2 cannabinoid receptor-inotropic response of rat isolated atria: endogenous signal transduction pathways. Biochem Pharmacol 69(12):1705–1713

    Article  PubMed  CAS  Google Scholar 

  11. Lim SY, Davidson SM, Yellon DM, Smith CCT (2009) The cannabinoid CB1 receptor antagonist, rimonabant, protects against acute myocardial infarction. Basic Res Cardiol 104(6):781–792

    Article  PubMed  CAS  Google Scholar 

  12. Mukhopadhyay P, Bátkai S, Rajesh M, Czifra N, Harvey-White J, Haskó G, Zsengeller Z, Gerard NP, Liaudet L, Kunos G et al (2007) Pharmacological inhibition of CB1 cannabinoid receptor protects against doxorubicin-induced cardiotoxicity. J Am Coll Cardiol 50(6):528–536

    Article  PubMed  CAS  Google Scholar 

  13. Wagner JA, Hu K, Karcher J, Bauersachs J, Schäfer A, Laser M, Han H, Ertl G (2003) CB(1) cannabinoid receptor antagonism promotes remodeling and cannabinoid treatment prevents endothelial dysfunction and hypotension in rats with myocardial infarction. Br J Pharmacol 138(7):1251–1258

    Article  PubMed  CAS  Google Scholar 

  14. Rinaldi-Carmona M, Barth F, Héaulme M, Shire D, Calandra B, Congy C, Martinez S, Maruani J, Néliat G, Caput D (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350(2–3):240–244

    Article  PubMed  CAS  Google Scholar 

  15. Matias I, Di Marzo V (2007) Endocannabinoids and the control of energy balance. Trends Endocrinol Metab 18(1):27–37

    Article  PubMed  CAS  Google Scholar 

  16. Tiyerili V, Zimmer S, Jung S, Wassmann K, Naehle CP, Lütjohann D, Zimmer A, Nickenig G, Wassmann S (2010) CB1 receptor inhibition leads to decreased vascular AT1 receptor expression, inhibition of oxidative stress and improved endothelial function. Basic Res Cardiol 105(4):465–477

    Article  PubMed  CAS  Google Scholar 

  17. Kaschina E, Grzesiak A, Li J, Foryst-Ludwig A, Timm M, Rompe F, Sommerfeld M, Kemnitz UR, Curato C, Namsolleck P et al (2008) Angiotensin II type 2 receptor stimulation: a novel option of therapeutic interference with the renin-angiotensin system in myocardial infarction? Circulation 118(24):2523–2532

    Article  PubMed  CAS  Google Scholar 

  18. Paulis L, Becker STR, Lucht K, Schwengel K, Slavic S, Kaschina E, Thöne-Reineke C, Dahlöf B, Unger T, Steckelings U (2012) Direct angiotensin II type 2 receptor stimulation in Nω-nitro-l-arginine-methyl ester-induced hypertension: the effect on pulse wave velocity and aortic remodeling. Hypertension 59(2):485–492

    Article  PubMed  CAS  Google Scholar 

  19. Agocha AE, Eghbali-Webb M (1997) A simple method for preparation of cultured cardiac fibroblasts from adult human ventricular tissue. Mol Cell Biochem 172(1–2):195–198

    Article  PubMed  CAS  Google Scholar 

  20. Vosgerau U, Lauer D, Unger T, Kaschina E (2010) Cleaved high molecular weight kininogen, a novel factor in the regulation of matrix metalloproteinases in vascular smooth muscle cells. Biochem Pharmacol 79(2):172–179

    Article  PubMed  CAS  Google Scholar 

  21. Piper HM, Meuter K, Schäfer C (2003) Cellular mechanisms of ischemia–reperfusion injury. Ann Thorac Surg 75(2):S644–S648

    Article  PubMed  Google Scholar 

  22. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44(4):503–512

    Article  PubMed  CAS  Google Scholar 

  23. Wagner JA, Hu K, Bauersachs J, Karcher J, Wiesler M, Goparaju SK, Kunos G, Ertl G (2001) Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. J Am Coll Cardiol 38(7):2048–2054

    Article  PubMed  CAS  Google Scholar 

  24. Weis F, Beiras-Fernandez A, Sodian R, Kaczmarek I, Reichart B, Beiras A, Schelling G, Kreth S (2010) Substantially altered expression pattern of cannabinoid receptor 2 and activated endocannabinoid system in patients with severe heart failure. J Mol Cell Cardiol 48(6):1187–1193

    Article  PubMed  CAS  Google Scholar 

  25. Ford WR, Honan SA, White R, Hiley CR (2002) Evidence of a novel site mediating anandamide-induced negative inotropic and coronary vasodilatator responses in rat isolated hearts. Br J Pharmacol 135(5):1191–1198

    Article  PubMed  CAS  Google Scholar 

  26. Lagneux C, Lamontagne D (2001) Involvement of cannabinoids in the cardioprotection induced by lipopolysaccharide. Br J Pharmacol 132(4):793–796

    Article  PubMed  CAS  Google Scholar 

  27. Joyeux M, Arnaud C, Godin-Ribuot D, Demenge P, Lamontagne D, Ribuot C (2002) Endocannabinoids are implicated in the infarct size-reducing effect conferred by heat stress preconditioning in isolated rat hearts. Cardiovasc Res 55(3):619–625

    Article  PubMed  CAS  Google Scholar 

  28. Cota D, Marsicano G, Tschöp M, Grübler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thöne-Reineke C, Ortmann S et al (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112(3):423–431

    PubMed  CAS  Google Scholar 

  29. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 51(4):600–606

    Article  PubMed  CAS  Google Scholar 

  30. Teixeira-Clerc F, Julien B, Grenard P, Tran Van Nhieu J, Deveaux V, Li L, Serriere-Lanneau V, Ledent C, Mallat A, Lotersztajn S (2006) CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat Med 12(6):671–676

    Article  PubMed  CAS  Google Scholar 

  31. Defer N, Wan J, Souktani R, Escoubet B, Perier M, Caramelle P, Manin S, Deveaux V, Bourin MC, Zimmer A et al (2009) The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusion-induced cardiomyopathy. FASEB J 23(7):2120–2130

    Article  PubMed  CAS  Google Scholar 

  32. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87(4):1285–1342

    Article  PubMed  CAS  Google Scholar 

  33. Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232(1):54–61

    Article  PubMed  Google Scholar 

  34. Ramsey MW, Goodfellow J, Jones CJ, Luddington LA, Lewis MJ, Henderson AH (1995) Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation 92(11):3212–3219

    Article  PubMed  CAS  Google Scholar 

  35. Bonapace S, Rossi A, Cicoira M, Golia G, Zanolla L, Franceschini L, Conte L, Marino P, Vassanelli C (2006) Aortic stiffness correlates with an increased extracellular matrix turnover in patients with dilated cardiomyopathy. Am Heart J 152(1):93.e1–93.e6

    Google Scholar 

  36. Tam J, Vemuri VK, Liu J, Bátkai S, Mukhopadhyay B, Godlewski G, Osei-Hyiaman D, Ohnuma S, Ambudkar SV, Pickel J et al (2010) Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest 120(8):2953–2966

    Article  PubMed  CAS  Google Scholar 

  37. Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59(4):418–458

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Sanofi-Aventis Deutschland GmbH.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Kaschina.

Electronic supplementary material

ESM 1

(PDF 241 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slavic, S., Lauer, D., Sommerfeld, M. et al. Cannabinoid receptor 1 inhibition improves cardiac function and remodelling after myocardial infarction and in experimental metabolic syndrome. J Mol Med 91, 811–823 (2013). https://doi.org/10.1007/s00109-013-1034-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1034-0

Keywords

Navigation