Journal of Molecular Medicine

, Volume 91, Issue 6, pp 653–664 | Cite as

The role of amyloidogenic protein oligomerization in neurodegenerative disease

Review

Abstract

A common pathological hallmark in many neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, is the formation of fibrillar protein aggregates referred to as amyloids. The amyloidogenic aggregates were long thought to be toxic, but mounting evidence supports the notion that a variety of amyloid aggregate intermediates to fibril formation, termed oligomers, may in fact be the primary culprit leading to neuronal dysfunction and cell death. While amyloid formation is a complex, heterogeneous process, aggregates formed by diverse, diseases-related proteins share many conformational similarities, suggesting common toxic mechanisms among these diseases. Ideally, similar therapeutic strategies may be applicable. This review focuses on the potential role of amyloidogenic oligomers in neurodegenerative disease, highlighting some promising therapeutic strategies.

Keywords

Amyloidogenic oligomers Neurodegenerative disease Alzheimer’s disease Parkinson’s disease Huntington’s disease Therapeutic strategies 

References

  1. 1.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry 333–366Google Scholar
  2. 2.
    Crowther DC (2002) Familial conformational diseases and dementias. Hum Mutat 20:1–14PubMedCrossRefGoogle Scholar
  3. 3.
    Ross CA, Margolis RL (2005) Neurogenetics: insights into degenerative diseases and approaches to schizophrenia. Clin Neurosci Res 5:3–14CrossRefGoogle Scholar
  4. 4.
    Platt GW, Radford SE (2009) Glimpses of the molecular mechanisms of beta(2)-microglobulin fibril formation in vitro: aggregation on a complex energy landscape. FEBS Lett 583:2623–2629PubMedCrossRefGoogle Scholar
  5. 5.
    Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298PubMedCrossRefGoogle Scholar
  6. 6.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112PubMedCrossRefGoogle Scholar
  7. 7.
    Kowalewski T, Holtzman DM (1999) In situ atomic force microscopy study of Alzheimer's β-amyloid peptide on different substrates: new insights into mechanism of β-sheet formation. Proc Natl Acad Sci U S A 96:3688–3693PubMedCrossRefGoogle Scholar
  8. 8.
    Fandrich M (2012) Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J Mol Biol 421:427–440PubMedCrossRefGoogle Scholar
  9. 9.
    Broersen K, Rousseau F, Schymkowitz J (2010) The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer's disease: oligomer size or conformation? Alzheimers Res Ther 2:12PubMedCrossRefGoogle Scholar
  10. 10.
    Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of A beta oligomers. FEBS J 277:1348–1358PubMedCrossRefGoogle Scholar
  11. 11.
    Lashuel HA, Lansbury PT (2006) Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q Rev Biophys 39:167–201PubMedCrossRefGoogle Scholar
  12. 12.
    Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe C (2009) Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284:4230–4237PubMedCrossRefGoogle Scholar
  13. 13.
    Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo Red. Proc Natl Acad Sci U S A 91:12243–12247PubMedCrossRefGoogle Scholar
  14. 14.
    Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW (1993) Neurodegeneration induced by beta-amyloid peptides in vitro—the role of peptide assembly state. J Neurosci 13:1676–1687PubMedGoogle Scholar
  15. 15.
    Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW (1991) In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 563:311–314PubMedCrossRefGoogle Scholar
  16. 16.
    Kayed R, Canto I, Breydo L, Rasool S, Lukacsovich T, Wu J, Albay R, Pensalfini A, Yeung S, Head E et al (2010) Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Aβ oligomers. Mol Neurodegner 5:57CrossRefGoogle Scholar
  17. 17.
    Okada T, Wakabayashi M, Ikeda K, Matsuzaki K (2007) Formation of toxic fibrils of Alzheimer’s amyloid β-protein-(1–40) by monosialoganglioside GM1, a neuronal membrane component. J Mol Biol 371:481–489PubMedCrossRefGoogle Scholar
  18. 18.
    Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 281:13828–13836PubMedCrossRefGoogle Scholar
  19. 19.
    Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23:138–144PubMedCrossRefGoogle Scholar
  20. 20.
    Terry RD, Peck A, DeTeresa R, Schechter R, Horoupian DS (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10:184–192PubMedCrossRefGoogle Scholar
  21. 21.
    Braak H, Braak E (1991) Morphological changes in the human cerebral cortex in dementia. J Hirnforsch 32:277–282PubMedGoogle Scholar
  22. 22.
    Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol 155:853–862PubMedCrossRefGoogle Scholar
  23. 23.
    McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 46:860–866PubMedCrossRefGoogle Scholar
  24. 24.
    Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA-J Am Med Assoc 283:1571–1577CrossRefGoogle Scholar
  25. 25.
    Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775:24–29PubMedCrossRefGoogle Scholar
  26. 26.
    Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ, Hersch SM, Li XJ (1999) Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J Neurosci 19:2522–2534PubMedGoogle Scholar
  27. 27.
    Kuemmerle S, Gutekunst CA, Klein AM, Li XJ, Li SH, Beal MF, Hersch SM, Ferrante RJ (1999) Huntingtin aggregates may not predict neuronal death in Huntington's disease. Ann Neurol 46:842–849PubMedCrossRefGoogle Scholar
  28. 28.
    Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55–66PubMedCrossRefGoogle Scholar
  29. 29.
    Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810PubMedCrossRefGoogle Scholar
  30. 30.
    Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S, Sun B, Gafni J, Ellerby LM, Trottier Y, Richards WG, Osmand A, Paganetti P, Bates GP (2010) Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington Disease. J Biol Chem 285:8808–8823Google Scholar
  31. 31.
    Lunkes A, Mandel JL (1998) A cellular model that recapitulates major pathogenic steps of Huntington's disease. Hum Mol Genet 7:1355–1361Google Scholar
  32. 32.
    Ratovitski T, Gucek M, Jiang H, Chighladze E, Waldron E, D'Ambola J, Hou Z, Liang Y, Poirier MA, Hirschhorn RR, Graham R, Hayden MR, Cole RN, Ross CA (2009) Mutant huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells. J Biol Chem 284:10855–10867Google Scholar
  33. 33.
    Gu X, Greiner ER, Mishra R, Kodali R, Osmand A, Finkbeiner S, Steffan JS, Thompson LM, Wetzel R, Yang XW (2009) Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD Mice. Neuron 64:828–840PubMedCrossRefGoogle Scholar
  34. 34.
    Mishra R, Hoop CL, Kodali R, Sahoo B, van der Wel PCA, Wetzel R (2012) Serine phosphorylation suppresses huntingtin amyloid accumulation by altering protein aggregation properties. J Mol Biol 424:1–14PubMedCrossRefGoogle Scholar
  35. 35.
    Bodner RA, Outeiro TF, Altmann S, Maxwell MM, Cho SH, Hyman BT, McLean PJ, Young AB, Housman DE, Kazantsev AG (2006) Pharmacological promotion of inclusion formation: a therapeutic approach for Huntington's and Parkinson's diseases. Proc Nat Acad Sci U S A 103:4246–4251CrossRefGoogle Scholar
  36. 36.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539PubMedCrossRefGoogle Scholar
  37. 37.
    Cleary JP, Walsh DM, Hofmeister J, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat Neurosci 8:79–84PubMedCrossRefGoogle Scholar
  38. 38.
    Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL et al (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Nat Acad Sci U S A 95:6448–6453CrossRefGoogle Scholar
  39. 39.
    Lesné S, MT K, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357PubMedCrossRefGoogle Scholar
  40. 40.
    Miller J, Arrasate M, Brooks E, Libeu CP, Legleiter J, Hatters D, Curtis J, Cheung K, Krishnan P, Mitra S et al (2012) Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat Chem Biol 7(12):925–934CrossRefGoogle Scholar
  41. 41.
    Snell RG, Macmillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, Macdonald ME, Gusella JF, Harper PS, Shaw DJ (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntingtons disease. Nat Genet 4:393–397PubMedCrossRefGoogle Scholar
  42. 42.
    Penney JB, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH (1997) CAG repeat number governs the development rate of pathology in Huntington's disease. Ann Neurol 41:689–692PubMedCrossRefGoogle Scholar
  43. 43.
    Legleiter J, Mitchell E, Lotz GP, Sapp E, Ng C, DiFiglia M, Thompson LM, Muchowski PJ (2010) Mutant huntingtin fragments form oligomers in a polyglutamine length-dependent manner in vitro and in vivo. J Biol Chem 285:14777–14790PubMedCrossRefGoogle Scholar
  44. 44.
    Wetzel R (2012) Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 421:466–490PubMedCrossRefGoogle Scholar
  45. 45.
    Marcellin D, Abramowski D, Young D, Richter J, Weiss A, Marcel A, Maassen J, Kauffmann M, Bibel M, Shimshek DR et al (2012) Fragments of HdhQ150 mutant huntingtin form a soluble oligomer pool that declines with aggregate deposition upon aging. PLoS One 7:e44457PubMedCrossRefGoogle Scholar
  46. 46.
    Olshina MA, Angley LM, Ramdzan YM, Tang JW, Bailey MF, Hill AF, Hatters DM (2010) Tracking mutant huntingtin aggregation kinetics in cells reveals three major populations that include an invariant oligomer pool. J Biol Chem 285:21807–21816PubMedCrossRefGoogle Scholar
  47. 47.
    Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S et al (2011) In vivo demonstration that α-synuclein oligomers are toxic. Proc Nat Acad Sci U S A 108:4194–4199CrossRefGoogle Scholar
  48. 48.
    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe C (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489PubMedCrossRefGoogle Scholar
  49. 49.
    Habicht G, Haupt C, Friedrich RP, Hortschansky P, Sachse C, Meinhardt J, Wieligmann K, Gellermann GP, Brodhun M, Gotz J et al (2007) Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing A beta protofibrils. Proc Nat Acad Sci U S A 104:19232–19237CrossRefGoogle Scholar
  50. 50.
    Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struc Biol 17:48–57CrossRefGoogle Scholar
  51. 51.
    Kodali R, Williams AD, Chemuru S, Wetzel R (2010) A beta(1–40) forms five distinct amyloid structures whose beta-sheet contents and fibril stabilities are correlated. J Mol Biol 401:503–517PubMedCrossRefGoogle Scholar
  52. 52.
    Bauer HH, Aebi U, Haner M, Hermann R, Muller M, Arvinte T, Merkle HP (1995) Architecture and polymorphism of fibrillar supramolecular assemblies produced by in-vitro aggregation of human calcitonin. J Struct Biol 115:1–15PubMedCrossRefGoogle Scholar
  53. 53.
    Goldsbury CS, Cooper GJS, Goldie KN, Muller SA, Saafi EL, Gruijters WTM, Misur MP (1997) Polymorphic fibrillar assembly of human amylin. J Struct Biol 119:17–27PubMedCrossRefGoogle Scholar
  54. 54.
    Jimenez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) The protofilament structure of insulin amyloid fibrils. Proc Nat Acad Sci U S A 99:9196–9201CrossRefGoogle Scholar
  55. 55.
    Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci 9:1960–1967PubMedCrossRefGoogle Scholar
  56. 56.
    Dzwolak W, Smirnovas V, Jansen R, Winter R (2004) Insulin forms amyloid in a strain-dependent manner: an FT-IR spectroscopic study. Protein Sci 13:1927–1932PubMedCrossRefGoogle Scholar
  57. 57.
    Chamberlain AK, MacPhee CE, Zurdo J, Morozova-Roche LA, Hill HAO, Dobson CM, Davis J (2000) Ultrastructural organization of amyloid fibrils by atomic force microscopy. Biophys J 79:3282–3293PubMedCrossRefGoogle Scholar
  58. 58.
    Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283:29639–29643PubMedCrossRefGoogle Scholar
  59. 59.
    Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y (2007) Evidence of fibril-like beta-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's beta-amyloid. Nat Struct Mol Biol 14:1157–1164PubMedCrossRefGoogle Scholar
  60. 60.
    Sandberg A, Luheshi L, Sollvander S, de Barros T, Macao B, Knowles T, Biverstal H, Lendel C, Ekholm-Petterson F, Dubnovitsky A et al (2010) Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Proc Natl Acad Sci U S A 107:15595–15600PubMedCrossRefGoogle Scholar
  61. 61.
    Eckert A, Hauptmann S, Scherping I, Meinhardt J, Rhein V, Drose S, Brandt U, Fandrich M, Muller W, Gotz J (2008) Oligomeric and fibrillar species of beta-amyloid (A beta 42) both impair mitochondrial function in P301L tau transgenic mice. J Mol Med-JMM 86:1255–1267CrossRefGoogle Scholar
  62. 62.
    Stine WB, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622PubMedCrossRefGoogle Scholar
  63. 63.
    Orte A, Birkett NR, Clarke RW, Devlin GL, Dobson CM, Klenerman D (2008) Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. Proc Nat Acad Sci U S A 105:14424–14429CrossRefGoogle Scholar
  64. 64.
    Jayaraman M, Kodali R, Sahoo B, Thakur AK, Mayasundari A, Mishra R, Peterson CB, Wetzel R (2012) Slow amyloid nucleation via alpha-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments. J Mol Biol 415:881–899PubMedCrossRefGoogle Scholar
  65. 65.
    Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon I-JL, Anjum DH, Kodali R, Creamer TP, Conway JF et al (2009) Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 16:380–389PubMedCrossRefGoogle Scholar
  66. 66.
    Campioni S, Mannini B, Zampagni M, Pensalfini A, Parrini C, Evangelisti E, Relini A, Stefani M, Dobson C, Cecchi C et al (2010) A causative link between the structure of aberrant protein oligomers and their toxicity. Nat Chem Biol 6:140–147PubMedCrossRefGoogle Scholar
  67. 67.
    Glabe CG, Kayed R (2006) Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66:S74–S78PubMedCrossRefGoogle Scholar
  68. 68.
    Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Secondary structure analysis of the scrapie-associated protein PrP 27–30 in water by infrared spectroscopy. Biochemistry 30:7672–7680PubMedCrossRefGoogle Scholar
  69. 69.
    Pan K-M, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE et al (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90:10962–10966PubMedCrossRefGoogle Scholar
  70. 70.
    Bruce ME (2003) TSE strain variation. Brit Med Bull 66:99–108PubMedCrossRefGoogle Scholar
  71. 71.
    Bessen RA, Marsh RF (1992) Identification of 2 biologically distinct strains of transmissible mink encephalopathy in hamsters. J Gen Virol 73:329–334PubMedCrossRefGoogle Scholar
  72. 72.
    Bessen RA, Marsh RF (1994) Distinct PrP properties suggest the molecular-basis of strain variation in transmissible mink encephalopathy. J Virol 68:7859–7868PubMedGoogle Scholar
  73. 73.
    Bruce ME (2003) TSE strain variation: an investigation into prion disease diversity. Brit Med Bull 66:99–108PubMedCrossRefGoogle Scholar
  74. 74.
    González L, Martin S, Begara-McGorum I, Hunter N, Houston F, Simmons M, Jeffrey M (2002) Effects of agent strain and host genotype on PrP accumulation in the brain of sheep naturally and experimentally affected with scrapie. J Comp Pathol 126:17–29PubMedCrossRefGoogle Scholar
  75. 75.
    Tanaka M, Collins SR, Toyama BH, Weissman JS (2006) The physical basis of how prion conformations determine strain phenotypes. Nature 442:585–589PubMedCrossRefGoogle Scholar
  76. 76.
    Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwarz RD, Roher AE, Walker LC (2000) Evidence for seeding of beta-amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J Neurosci 20:3606–3611PubMedGoogle Scholar
  77. 77.
    Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784PubMedCrossRefGoogle Scholar
  78. 78.
    Stohr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB, Giles K (2012) Purified and synthetic Alzheimer's amyloid beta (Aβ) prions. Proc Natl Acad Sci U S A 109:11025–11030PubMedCrossRefGoogle Scholar
  79. 79.
    Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–U325PubMedCrossRefGoogle Scholar
  80. 80.
    Mougenot A-L, Nicot S, Bencsik A, Morignat E, Verchere J, Lakhdar L, Legastelois S, Baron T (2012) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33:2225–2228PubMedCrossRefGoogle Scholar
  81. 81.
    Luk KC, Kehm VM, Zhang B, O'Brien P, Trojanowski JQ, Lee VMY (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209:975–986PubMedCrossRefGoogle Scholar
  82. 82.
    Braak H, Del Tredici K (2011) Alzheimer's pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121:589–595PubMedCrossRefGoogle Scholar
  83. 83.
    Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536PubMedCrossRefGoogle Scholar
  84. 84.
    Ravits J, Paul P, Jorg C (2007) Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology 68:1571–1575PubMedCrossRefGoogle Scholar
  85. 85.
    Vonsattel JPG, DiFiglia M (1998) Huntington disease. J Neuropath Exp Neurol 57:369–384PubMedCrossRefGoogle Scholar
  86. 86.
    Duennwald ML, Shorter J (2010) Countering amyloid polymorphism and drug resistance with minimal drug cocktails. Prion 4:244–251PubMedCrossRefGoogle Scholar
  87. 87.
    Roberts BE, Duennwald ML, Wang H, Chung C, Lopreiato NP, Sweeny EA, Knight MN, Shorter J (2009) A synergistic small-molecule combination directly eradicates diverse prion strain structures. Nat Chem Biol 5:936–946PubMedCrossRefGoogle Scholar
  88. 88.
    Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med-JMM 81:678–699CrossRefGoogle Scholar
  89. 89.
    Winklhofer KF, Tatzelt J, Haass C (2008) The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J 27:336–349PubMedCrossRefGoogle Scholar
  90. 90.
    Bolognesi B, Kumita JR, Barros TP, Esbjorner EK, Luheshi LM, Crowther DC, Wilson MR, Dobson CM, Favrin G, Yerbury J (2010) ANS binding reveals common features of cytotoxic amyloid species. ACS Chem Biol 5:735–740PubMedCrossRefGoogle Scholar
  91. 91.
    Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919PubMedCrossRefGoogle Scholar
  92. 92.
    Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552–1555PubMedCrossRefGoogle Scholar
  93. 93.
    Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI (2006) Progressive disruption of cellular protein folding in models of polyglutaminediseases. Science 311:1471–1474PubMedCrossRefGoogle Scholar
  94. 94.
    Chen-Plotkin AS, Sadri-Vakill G, Yohrling GJ, Bravernan MW, Berin CL, Glajch KE, DiRocco DP, Farrella LA, Krainc D, Gines S et al (2006) Decreased association of the transcription factor Sp1 with genes downregulated in Huntington's disease. Neurobiol Dis 22:233–241PubMedCrossRefGoogle Scholar
  95. 95.
    Hands SL, Wyttenbach A (2010) Neurotoxic protein oligomerisation associated with polyglutamine diseases. Acta Neuropathol 120:419–437PubMedCrossRefGoogle Scholar
  96. 96.
    Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M et al (2004) alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364:1167–1169PubMedCrossRefGoogle Scholar
  97. 97.
    Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet 18:106–108PubMedCrossRefGoogle Scholar
  98. 98.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276:2045–2047PubMedCrossRefGoogle Scholar
  99. 99.
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R et al (2003) alpha-synuclein locus triplication causes Parkinson's disease. Science 302:841–841PubMedCrossRefGoogle Scholar
  100. 100.
    Zarranz J, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173PubMedCrossRefGoogle Scholar
  101. 101.
    Charles V, Mezey E, Reddy PH, Dehejia A, Young TA, Polymeropoulos MH, Brownstein MJ, Tagle DA (2000) Alpha-synuclein immunoreactivity of huntingtin polyglutamine aggregates in striatum and cortex of Huntington's disease patients and transgenic mouse models. Neurosci Lett 289:29–32PubMedCrossRefGoogle Scholar
  102. 102.
    Fujishiro H, Tsuboi Y, Lin W, Uchikado H, Dickson D (2008) Co-localization of tau and alpha-synuclein in the olfactory bulb in Alzheimer's disease with amygdala Lewy bodies. Acta Neuropathol 116:17–24PubMedCrossRefGoogle Scholar
  103. 103.
    Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L (2001) beta-Amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. Proc Natl Acad Sci USA 98:12245–12250PubMedCrossRefGoogle Scholar
  104. 104.
    Olzscha H, Schermann S, Woerner A, Pinkert S, Hecht M, Tartaglia G, Vendruscolo M, Hayer-Hartl M, Hartl F, Vabulas R (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144:67–78PubMedCrossRefGoogle Scholar
  105. 105.
    Vabulas R, Hartl F (2011) Aberrant protein interactions in amyloid disease. Cell Cycle 10:1512–1513PubMedCrossRefGoogle Scholar
  106. 106.
    Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging—a mini-review. Gerontology 55:550–558PubMedCrossRefGoogle Scholar
  107. 107.
    Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10:205–215PubMedCrossRefGoogle Scholar
  108. 108.
    Lotz GP, Legleiter J, Aron R, Mitchell EJ, Huang SY, Ng CP, Glabe C, Thompson LM, Muchowski PJ (2010) Hsp70 and Hsp40 functionally interact with soluble mutant huntingtin oligomers in a classic ATP-dependent reaction cycle. J Biol Chem 285:38183–38193PubMedCrossRefGoogle Scholar
  109. 109.
    Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22PubMedCrossRefGoogle Scholar
  110. 110.
    Chafekar SM, Duennwald ML (2012) Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLoS One 7:e37929PubMedCrossRefGoogle Scholar
  111. 111.
    Labbadia J, Cunliffe H, Weiss A, Katsyuba E, Sathasivam K, Seredenina T, Woodman B, Moussaoui S, Frentzel S, Luthi-Carter R et al (2011) Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J Clin Invest 121:3306–3319PubMedCrossRefGoogle Scholar
  112. 112.
    Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington's disease. Nature 448:704–U711PubMedCrossRefGoogle Scholar
  113. 113.
    Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D et al (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat Neurosci 13:567–U574PubMedCrossRefGoogle Scholar
  114. 114.
    Kazlauskaite J, Sanghera N, Sylvester I, Venien-Bryan C, Pinheiro TJT (2003) Structural changes of the prion protein in lipid membranes leading to aggregation and fibrillization. Biochemistry 42:3295–3304PubMedCrossRefGoogle Scholar
  115. 115.
    Legleiter J, Fryer JD, Holtzman DM, Kowalewski T (2011) The modulating effect of mechanical changes in lipid bilayers caused by ApoE-containing lipoproteins on a beta induced membrane disruption. ACS Chem Neurol 2:588–599CrossRefGoogle Scholar
  116. 116.
    Porat Y, Kolusheva S, Jelinek R, Gazit E (2003) The human islet amyloid polypeptide forms transient membrane-active prefibrillar assemblies. Biochemistry 42:10971–10977PubMedCrossRefGoogle Scholar
  117. 117.
    Stefani M (2007) Generic cell dysfunction in neurodegenerative disorders: role of surfaces in early protein misfolding, aggregation, and aggregate cytotoxicity. Neuroscientist 13:519–531PubMedCrossRefGoogle Scholar
  118. 118.
    Yates EA, Cucco EM, Legleiter J (2011) Point mutations in A beta induce polymorphic aggregates at liquid/solid interfaces. ACS Chem Neurol 2:294–307CrossRefGoogle Scholar
  119. 119.
    Zhao HX, Tuominen EKJ, Kinnunen PKJ (2004) Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43:10302–10307PubMedCrossRefGoogle Scholar
  120. 120.
    Wells K, Farooqui AA, Liss L, Horrocks LA (1995) Neural membrane phospholipids in Alzheimer disease. Neurochem Res 20:1329–1333PubMedCrossRefGoogle Scholar
  121. 121.
    Kagan BL, Azimov R, Azimova R (2004) Amyloid peptide channels. J Membr Biol 202:1–10PubMedCrossRefGoogle Scholar
  122. 122.
    Quist A, Doudevski L, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Nat Acad Sci U S A 102:10427–10432CrossRefGoogle Scholar
  123. 123.
    Yamamoto A, Lucas J, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101:57–66PubMedCrossRefGoogle Scholar
  124. 124.
    Zu T, Duvick L, Kaytor M, Berlinger M, Zoghbi H, Clark H, Orr H (2004) Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci 24:8853–8861PubMedCrossRefGoogle Scholar
  125. 125.
    Sah DWY, Aronin N (2011) Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest 121:500–507PubMedCrossRefGoogle Scholar
  126. 126.
    Boudreau RL, McBride JL, Martins I, Shen SH, Xing Y, Carter BJ, Davidson BL (2009) Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice. Mol Ther 17:1053–1063PubMedCrossRefGoogle Scholar
  127. 127.
    Cohen F, Kelly J (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426:905–909PubMedCrossRefGoogle Scholar
  128. 128.
    Estrada L, Soto C (2006) Inhibition of protein misfolding and aggregation by small rationally-designed peptides. Curr Pharm Des 12:2557–2567PubMedCrossRefGoogle Scholar
  129. 129.
    De Lorenzi E, Giorgetti S, Grossi S, Merlini G, Caccialanza G, Bellotti V (2004) Pharmaceutical strategies against amyloidosis: old and new drugs in targeting a "protein misfolding disease". Curr Med Chem 11:1065–1084PubMedCrossRefGoogle Scholar
  130. 130.
    Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW (2012) The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol 421:185–203PubMedCrossRefGoogle Scholar
  131. 131.
    Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76PubMedCrossRefGoogle Scholar
  132. 132.
    Gura T (2008) Hope in Alzheimer's fight emerges from unexpected places. Nat Med 14:894–894PubMedCrossRefGoogle Scholar
  133. 133.
    de Lartigue J (2012) Tafamidis for transthyretin amyloidosis. Drugs Today 48:331–337PubMedGoogle Scholar
  134. 134.
    Arrasate M, Finkbeiner S (2012) Protein aggregates in Huntington's disease. Exp Neurol 238:1–11PubMedCrossRefGoogle Scholar
  135. 135.
    Steffan J, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol B, Kazantsev A, Schmidt E, Zhu Y, Greenwald M et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743PubMedCrossRefGoogle Scholar
  136. 136.
    Iqbal K, Liu F, Gong C, Grundke-Iqbal I (2010) Tau in Alzheimer Disease and related tauopathies. Curr Alzheimer Res 7:656–664PubMedCrossRefGoogle Scholar
  137. 137.
    Min S, Cho S, Zhou Y, Schroeder S, Haroutunian V, Seeley W, Huang E, Shen Y, Masliah E, Mukherjee C et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67:953–966PubMedCrossRefGoogle Scholar
  138. 138.
    Soga S, Akinaga S, Shiotsu Y (2013) Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr Pharm Design 19Google Scholar
  139. 139.
    Auluck PK, Meulener MC, Bonini NM (2005) Mechanisms of suppression of alpha-synuclein neurotoxicity by geldanamycin in Drosophila. J Biol Chem 280:2873–2878PubMedCrossRefGoogle Scholar
  140. 140.
    Waza M, Adachi H, Katsuno M, Minamiyama M, Sang C, Tanaka F, Inukai A, Doyu M, Sobue G (2005) 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med 11:1088–1095PubMedCrossRefGoogle Scholar
  141. 141.
    Baldo B, Weiss A, Parker CN, Bibel M, Paganetti P, Kaupmann K (2012) A Screen for enhancers of clearance identifies huntingtin as a heat shock protein 90 (Hsp90) client protein. J Biol Chem 287:1406–1414PubMedCrossRefGoogle Scholar
  142. 142.
    Kalia S, Kalia L, McLean P (2010) Molecular chaperones as rational drug targets for Parkinson's disease therapeutics. CNS Neurol Disord-DR 9:741–753CrossRefGoogle Scholar
  143. 143.
    Voisine C, Pedersen J, Morimoto R (2010) Chaperone networks: tipping the balance in protein folding diseases. Neurobiol Dis 40:12–20PubMedCrossRefGoogle Scholar
  144. 144.
    Hageman J, van Waarde M, Zylicz A, Walerych D, Kampinga HH (2011) The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem J 435:127–142PubMedCrossRefGoogle Scholar
  145. 145.
    Abisambra JF, Jinwal UK, Suntharalingam A, Arulselvam K, Brady S, Cockman M, Jin Y, Zhang B, Dickey CA (2012) DnaJA1 antagonizes constitutive Hsp70-mediated stabilization of tau. J Mol Biol 421:653–661PubMedCrossRefGoogle Scholar
  146. 146.
    Fewell SW, Smith CM, Lyon MA, Dumitrescu TP, Wipf P, Day BW, Brodsky JL (2004) Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem 279:51131–51140PubMedCrossRefGoogle Scholar
  147. 147.
    Sahara N, Maeda S, Yoshiike Y, Mizoroki T, Yamashita S, Murayama M, Park JM, Saito Y, Murayama S, Takashima A (2007) Molecular chaperone-mediated Tau protein metabolism counteracts the formation of granular Tau oligomers in human brain. J Neurosci Res 85:3098–3108PubMedCrossRefGoogle Scholar
  148. 148.
    Galimberti D, Scarpini E (2011) Disease-modifying treatments for Alzheimer’s disease. Ther Adv Neurol Disord 4:203–216Google Scholar
  149. 149.
    Gerald Z, Ockert W (2013) Alzheimer's disease market: hope deferred. Nat Rev Drug Discov 12:19–20Google Scholar
  150. 150.
    Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ, Liu Y, Heise CE, Hoyte K, Luk W, Lu Y, Peng K, Wu P, Rouge L, Zhang Y, Lazarus RA, Scearce-Levie K, Wang W, Wu Y, Tessier-Lavigne M, Watts RJ (2011) A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo. Sci Transl Med 3:84ra43Google Scholar
  151. 151.
    Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, Lu Y, Bhangale T, Graham RR, Huttenlocher J, Bjornsdottir G, Andreassen OA, Jonsson EG, Palotie A, Behrens TW, Magnusson OT, Kong A, Thorsteinsdottir U, Watts RJ, Stefansson K (2012) A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488:96–99Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Novartis Institutes for Biomedical Research Novartis Pharma AGBaselSwitzerland
  2. 2.The C. Eugene Bennett Department of Chemistry, Center for Neuroscience, Robert C. Byrd Health Sciences CenterWest Virginia UniversityMorgantownUSA

Personalised recommendations