Journal of Molecular Medicine

, Volume 90, Issue 9, pp 987–996 | Cite as

Etiology of Crohn’s disease: many roads lead to autophagy

Review

Abstract

Crohn’s disease is a complex multifactor diseases that occur in individuals with genetic predisposition in whom environmental and microbial triggers cause a deleterious chronic immune response. Susceptibility to Crohn’s disease is influenced by common variants at many loci. Genetic studies have emphasized the role of host susceptibility in inflammatory bowel disease onset with the identification of about 100 risk loci, most of which encode proteins involved in immunity, host defense against microbes, and gut homeostasis. In this review, we focus on susceptibility genes related to autophagy in the etiology of Crohn’s disease (CD) and their complex interplay with the gut microbiota, as illustrated by the relationship between immunity-related GTPase family M alleles, microRNA, and xenophagy in CD predisposition.

Keywords

IBD Crohn’s disease Host susceptibility Autophagy E. coli MicroRNA 

Notes

Acknowledgments

Studies in ADM laboratory are supported by grants from the Ministère de la Recherche et de la Technologie (JE2526, UMR 1071), from Inserm (UMR 1071), from INRA (USC 2018), and from Association F. Aupetit. Studies in PH laboratories were supported by the Institut National du Cancer [07/3D1616/Pdoc-110-32/NG-NC, PL0079, and INFLACOL, the European Community (MICROENVIMET, FP7-HEALTH-F2-2008-201279), and ARC.

References

  1. 1.
    Economou M, Pappas G (2008) New global map of Crohn's disease: Genetic, environmental, and socioeconomic correlations. Inflamm Bowel Dis 14:709–720PubMedCrossRefGoogle Scholar
  2. 2.
    Shanahan F, Bernstein CN (2009) The evolving epidemiology of inflammatory bowel disease. Curr Opin Gastroenterol 25:301–305PubMedCrossRefGoogle Scholar
  3. 3.
    Bengtson MB, Solberg C, Aamodt G, Jahnsen J, Moum B, Sauar J, Vatn MH (2009) Clustering in time of familial IBD separates ulcerative colitis from Crohn's disease. Inflamm Bowel Dis 15:1867–1874PubMedCrossRefGoogle Scholar
  4. 4.
    Spehlmann ME, Begun AZ, Burghardt J, Lepage P, Raedler A, Schreiber S (2008) Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study. Inflamm Bowel Dis 14:968–976PubMedCrossRefGoogle Scholar
  5. 5.
    van Heel DA, Fisher SA, Kirby A, Daly MJ, Rioux JD, Lewis CM (2004) Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum Mol Genet 13:763–770PubMedCrossRefGoogle Scholar
  6. 6.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599–603PubMedCrossRefGoogle Scholar
  7. 7.
    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603–606PubMedCrossRefGoogle Scholar
  8. 8.
    Khor B, Gardet A, Xavier RJ (2011) Genetics and pathogenesis of inflammatory bowel disease. Nature 474:307–317PubMedCrossRefGoogle Scholar
  9. 9.
    Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 42:1118–1125PubMedCrossRefGoogle Scholar
  10. 10.
    Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, Nieuwenhuis EE, Higgins DE, Schreiber S, Glimcher LH et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–756PubMedCrossRefGoogle Scholar
  11. 11.
    Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, Boucher G, Ripke S, Ellinghaus D, Burtt N et al (2011) Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 43:1066–1073PubMedCrossRefGoogle Scholar
  12. 12.
    Rutgeerts P, Goboes K, Peeters M, Hiele M, Penninckx F, Aerts R, Kerremans R, Vantrappen G (1991) Effect of faecal stream diversion on recurrence of Crohn's disease in the neoterminal ileum. Lancet 338:771–774PubMedCrossRefGoogle Scholar
  13. 13.
    Man SM, Kaakoush NO, Mitchell HM (2011) The role of bacteria and pattern-recognition receptors in Crohn's disease. Nat Rev Gastroenterol Hepatol 8:152–168PubMedCrossRefGoogle Scholar
  14. 14.
    Sokol H, Seksik P, Rigottier-Gois L, Lay C, Lepage P, Podglajen I, Marteau P, Dore J (2006) Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis 12:106–111PubMedCrossRefGoogle Scholar
  15. 15.
    Zoetendal EG, Rajilic-Stojanovic M, de Vos WM (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57:1605–1615PubMedCrossRefGoogle Scholar
  16. 16.
    Pineton de Chambrun G, Colombel JF, Poulain D, Darfeuille-Michaud A (2008) Pathogenic agents in inflammatory bowel diseases. Curr Opin Gastroenterol 24:440–447PubMedCrossRefGoogle Scholar
  17. 17.
    Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, Orsi RH, Wiedmann M, McDonough P, Kim SG et al (2007) Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. Isme J 1:403–418PubMedCrossRefGoogle Scholar
  18. 18.
    Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA, Swidsinski A, Beaugerie L, Colombel JF (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127:412–421PubMedCrossRefGoogle Scholar
  19. 19.
    Darfeuille-Michaud A, Neut C, Barnich N, Lederman E, Di Martino P, Desreumaux P, Gambiez L, Joly B, Cortot A, Colombel JF (1998) Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology 115:1405–1413PubMedCrossRefGoogle Scholar
  20. 20.
    Eaves-Pyles T, Allen CA, Taormina J, Swidsinski A, Tutt CB, Eric Jezek G, Islas-Islas M, Torres AG (2008) Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol 298:397–409PubMedCrossRefGoogle Scholar
  21. 21.
    Martinez-Medina M, Aldeguer X, Lopez-Siles M, Gonzalez-Huix F, Lopez-Oliu C, Dahbi G, Blanco JE, Blanco J, Garcia-Gil LJ, Darfeuille-Michaud A (2009) Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflamm Bowel Dis 15:872–882PubMedCrossRefGoogle Scholar
  22. 22.
    Sasaki M, Sitaraman SV, Babbin BA, Gerner-Smidt P, Ribot EM, Garrett N, Alpern JA, Akyildiz A, Theiss AL, Nusrat A et al (2007) Invasive Escherichia coli are a feature of Crohn's disease. Lab Invest 87:1042–1054PubMedCrossRefGoogle Scholar
  23. 23.
    Barnich N, Carvalho FA, Glasser AL, Darcha C, Jantscheff P, Allez M, Peeters H, Bommelaer G, Desreumaux P, Colombel JF et al (2007) CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 117:1566–1574PubMedCrossRefGoogle Scholar
  24. 24.
    Carvalho FA, Barnich N, Sivignon A, Darcha C, Chan CH, Stanners CP, Darfeuille-Michaud A (2009) Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med 206:2179–2189PubMedCrossRefGoogle Scholar
  25. 25.
    Gradel KO, Nielsen HL, Schonheyder HC, Ejlertsen T, Kristensen B, Nielsen H (2009) Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis. Gastroenterology 137:495–501PubMedCrossRefGoogle Scholar
  26. 26.
    Brown SA, Palmer KL, Whiteley M (2008) Revisiting the host as a growth medium. Nat Rev Microbiol 6:657–666PubMedCrossRefGoogle Scholar
  27. 27.
    Mehrpour M, Esclatine A, Beau I, Codogno P (2010) Overview of macroautophagy regulation in mammalian cells. Cell Res 20:748–762PubMedCrossRefGoogle Scholar
  28. 28.
    Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786PubMedCrossRefGoogle Scholar
  29. 29.
    Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, Chiba T, Tanaka K, Kominami E (2006) Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem 281:4035–4041PubMedCrossRefGoogle Scholar
  30. 30.
    Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97PubMedCrossRefGoogle Scholar
  31. 31.
    Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4:e423PubMedCrossRefGoogle Scholar
  32. 32.
    Deretic V (2010) Autophagy in infection. Curr Opin Cell Biol 22:252–262PubMedCrossRefGoogle Scholar
  33. 33.
    Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293PubMedCrossRefGoogle Scholar
  34. 34.
    Brest P, Corcelle EA, Cesaro A, Chargui A, Belaid A, Klionsky DJ, Vouret-Craviari V, Hebuterne X, Hofman P, Mograbi B (2010) Autophagy and Crohn's disease: at the crossroads of infection, inflammation, immunity, and cancer. Curr Mol Med 10:486–502PubMedCrossRefGoogle Scholar
  35. 35.
    Brinar M, Vermeire S, Cleynen I, Lemmens B, Sagaert X, Henckaerts L, Van Assche G, Geboes K, Rutgeerts P, De Hertogh G (2012) Genetic variants in autophagy-related genes and granuloma formation in a cohort of surgically treated Crohn's disease patients. J Crohns Colitis 6:43–50PubMedCrossRefGoogle Scholar
  36. 36.
    Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39:207–211PubMedCrossRefGoogle Scholar
  37. 37.
    Henckaerts L, Cleynen I, Brinar M, John JM, Van Steen K, Rutgeerts P, Vermeire S (2011) Genetic variation in the autophagy gene ULK1 and risk of Crohn's disease. Inflamm Bowel Dis 17:1392–1397PubMedCrossRefGoogle Scholar
  38. 38.
    Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Soars D et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat Genet 39:830–832PubMedCrossRefGoogle Scholar
  39. 39.
    Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604PubMedCrossRefGoogle Scholar
  40. 40.
    Shen XY, Shi RH, Wang Y, Zhang HJ, Zhou XQ, Shen FC, Li KB (2010) Toll-like receptor gene polymorphisms and susceptibility to inflammatory bowel disease in Chinese Han and Caucasian populations. Zhonghua Yi Xue Za Zhi 90:1416–1420PubMedGoogle Scholar
  41. 41.
    Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 40:955–962PubMedCrossRefGoogle Scholar
  42. 42.
    Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, Ferguson DJ, Campbell BJ, Jewell D, Simmons A (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16:90–97PubMedCrossRefGoogle Scholar
  43. 43.
    Kuballa P, Huett A, Rioux JD, Daly MJ, Xavier RJ (2008) Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS ONE 3:e3391PubMedCrossRefGoogle Scholar
  44. 44.
    Lapaquette P, Glasser AL, Huett A, Xavier RJ, Darfeuille-Michaud A (2010) Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol 12:99–113PubMedCrossRefGoogle Scholar
  45. 45.
    Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11:55–62PubMedCrossRefGoogle Scholar
  46. 46.
    Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C (2010) ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 139:1630–1641, 1641 e1631-1632PubMedCrossRefGoogle Scholar
  47. 47.
    Lapaquette P, Bringer MA, Darfeuille-Michaud A (2012) Defects in autophagy favour adherent-invasive E. coli persistence within macrophages leading to increased pro-inflammatory response. Cell Microbiol 14:791–807PubMedCrossRefGoogle Scholar
  48. 48.
    Plantinga TS, Crisan TO, Oosting M, van de Veerdonk FL, de Jong DJ, Philpott DJ, van der Meer JW, Girardin SE, Joosten LA, Netea MG (2011) Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut 60:1229–1235PubMedCrossRefGoogle Scholar
  49. 49.
    Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268PubMedCrossRefGoogle Scholar
  50. 50.
    Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, Head RD, Xavier R, Stappenbeck TS, Virgin HW (2010) Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141:1135–1145PubMedCrossRefGoogle Scholar
  51. 51.
    Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, Kishi C, Kc W, Carrero JA, Hunt S et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–263PubMedCrossRefGoogle Scholar
  52. 52.
    Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V, Mari B, Barbry P, Mosnier JF, Hebuterne X et al (2011) A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat Genet 43:242–245PubMedCrossRefGoogle Scholar
  53. 53.
    Taylor GA (2007) IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens. Cell Microbiol 9:1099–1107PubMedCrossRefGoogle Scholar
  54. 54.
    Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L, Dunn DM, Glowalla E, Leptin M, Howard JC (2005) The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol 6:R92PubMedCrossRefGoogle Scholar
  55. 55.
    Bekpen C, Marques-Bonet T, Alkan C, Antonacci F, Leogrande MB, Ventura M, Kidd JM, Siswara P, Howard JC, Eichler EE (2009) Death and resurrection of the human IRGM gene. PLoS Genet 5:e1000403PubMedCrossRefGoogle Scholar
  56. 56.
    Collazo CM, Yap GS, Sempowski GD, Lusby KC, Tessarollo L, Woude GF, Sher A, Taylor GA (2001) Inactivation of LRG-47 and IRG-47 reveals a family of interferon gamma-inducible genes with essential, pathogen-specific roles in resistance to infection. J Exp Med 194:181–188PubMedCrossRefGoogle Scholar
  57. 57.
    Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766PubMedCrossRefGoogle Scholar
  58. 58.
    MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302:654–659PubMedCrossRefGoogle Scholar
  59. 59.
    Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441PubMedCrossRefGoogle Scholar
  60. 60.
    McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, Goyette P, Zody MC, Hall JL, Brant SR, Cho JH et al (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat Genet 40:1107–1112PubMedCrossRefGoogle Scholar
  61. 61.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  62. 62.
    Brest P, Lapaquette P, Mograbi B, Darfeuille-Michaud A, Hofman P (2011) Risk predisposition for Crohn disease: a "menage a trois" combining IRGM allele, miRNA and xenophagy. Autophagy 7:786–787PubMedCrossRefGoogle Scholar
  63. 63.
    Fasseu M, Treton X, Guichard C, Pedruzzi E, Cazals-Hatem D, Richard C, Aparicio T, Daniel F, Soule JC, Moreau R et al (2010) Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One 5:e13160PubMedCrossRefGoogle Scholar
  64. 64.
    Singh SB, Ornatowski W, Vergne I, Naylor J, Delgado M, Roberts E, Ponpuak M, Master S, Pilli M, White E et al (2010) Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol 12:1154–1165PubMedCrossRefGoogle Scholar
  65. 65.
    Gregoire IP, Richetta C, Meyniel-Schicklin L, Borel S, Pradezynski F, Diaz O, Deloire A, Azocar O, Baguet J, Le Breton M et al (2011) IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathog 7:e1002422PubMedCrossRefGoogle Scholar
  66. 66.
    Dumortier J, Lapalus MG, Guillaud O, Poncet G, Gagnieu MC, Partensky C, Scoazec JY (2008) Everolimus for refractory Crohn's disease: a case report. Inflamm Bowel Dis 14:874–877PubMedCrossRefGoogle Scholar
  67. 67.
    Massey DC, Bredin F, Parkes M (2008) Use of sirolimus (rapamycin) to treat refractory Crohn's disease. Gut 57:1294–1296PubMedCrossRefGoogle Scholar
  68. 68.
    Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG, Nabi IR, Roberge M (2009) Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One 4:e7124PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X, Ma D et al (2007) Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci U S A 104:19023–19028PubMedCrossRefGoogle Scholar
  70. 70.
    Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O'Kane CJ, Schreiber SL et al (2007) Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol 3:331–338PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Clermont Université, Université d’AuvergneClermont-FerrandFrance
  2. 2.Inserm U1071Clermont-FerrandFrance
  3. 3.INRA, USC2018Clermont-FerrandFrance
  4. 4.Centre Hospitalier UniversitaireClermont-FerrandFrance
  5. 5.IRCAN, INSERM U1081, CNRS UMR 7284, Team 3NiceFrance
  6. 6.Faculté de MédecineUniversité de Nice Sophia AntipolisNiceFrance
  7. 7.Biobank UnitCentre Hospitalo-Universitaire de Nice, Hôpital PasteurNiceFrance
  8. 8.Laboratoire de Pathologie Clinique et ExpérimentaleCentre Hospitalo-Universitaire de Nice, Hôpital PasteurNiceFrance

Personalised recommendations