Journal of Molecular Medicine

, Volume 90, Issue 12, pp 1487–1496 | Cite as

Rapid identification of novel functional promoters for gene therapy

  • Ian A. Pringle
  • Deborah R. Gill
  • Mary M. Connolly
  • Anna E. Lawton
  • Anne-Marie Hewitt
  • Graciela Nunez-Alonso
  • Seng H. Cheng
  • Ronald K. Scheule
  • Lee A. Davies
  • Stephen C. Hyde
Original Article


Transcriptional control of transgene expression is crucial to successful gene therapy, yet few promoter/enhancer combinations have been tested in clinical trials. We created a simple, desktop computer database and populated it with promoter sequences from publicly available sources. From this database, we rapidly identified novel CpG-free promoter sequences suitable for use in non-inflammatory, non-viral in vivo gene transfer. In a simple model of lung gene transfer, five of the six promoter elements selected, chosen without prior knowledge of their transcriptional activities, directed significant transgene expression. Each of the five novel promoters directed transgene expression for at least 14 days post-delivery, greatly exceeding the duration achieved with the commonly used CpG-rich viral enhancer/promoters. Novel promoter activity was also evaluated in a more clinically relevant model of aerosol-mediated lung gene transfer and in the liver following delivery via high-pressure tail vein injection. In each case, the novel CpG-free promoters exhibited higher and/or more sustained transgene expression than commonly used CpG-rich enhancer/promoter sequences. This study demonstrates that novel CpG-free promoters can be readily identified and that they can direct significant levels of transgene expression. Furthermore, the database search criteria can be quickly adjusted to identify other novel promoter elements for a variety of transgene expression applications.


Gene therapy Promoter Database Transgene expression CpG 

Supplementary material

109_2012_928_MOESM1_ESM.pdf (953 kb)
ESM 1(PDF 953 kb) (51.5 mb)
ESM 1The FileMaker Pro version of the PromoSer database contains 62571 promoter sequences. (ZIP 51.5 MB) (4.2 mb)
ESM 1The FileMaker Pro version of the EPD database contains ~4000 promoter sequences. (ZIP 4.20 MB) (13 kb)
ESM 1The FileMaker Pro databases have the facility to count the total number of binding sites for a user-defined 'family' of (up to 100) arbitrary DNA sequences (eg transcription factor binding sites). Instructions for how to perform this are included in the databases. (ZIP 13.1 kb)


  1. 1.
    Alton EW, Stern M, Farley R, Jaffe A, Chadwick SL, Phillips J, Davies J, Smith SN, Browning J, Davies MG et al (1999) Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet 353:947–954PubMedCrossRefGoogle Scholar
  2. 2.
    Ruiz FE, Clancy JP, Perricone MA, Bebok Z, Hong JS, Cheng SH, Meeker DP, Young KR, Schoumacher RA, Weatherly MR et al (2001) A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum Gene Ther 12:751–761PubMedCrossRefGoogle Scholar
  3. 3.
    Hyde SC, Pringle IA, Abdullah S, Lawton AE, Davies LA, Varathalingam A, Nunez-Alonso G, Green AM, Bazzani RP, Sumner-Jones SG et al (2008) CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 26:549–551PubMedCrossRefGoogle Scholar
  4. 4.
    Yew NS, Zhao H, Przybylska M, Wu IH, Tousignant JD, Scheule RK, Cheng SH (2002) CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 5:731–738PubMedCrossRefGoogle Scholar
  5. 5.
    Halees AS, Leyfer D, Weng Z (2003) PromoSer: a large-scale mammalian promoter and transcription start site identification service. Nucleic Acids Res 31:3554–3559PubMedCrossRefGoogle Scholar
  6. 6.
    Halees AS, Weng Z (2004) PromoSer: improvements to the algorithm, visualization and accessibility. Nucleic Acids Res 32:W191–W194PubMedCrossRefGoogle Scholar
  7. 7.
    Cavin Perier R, Junier T, Bucher P (1998) The eukaryotic promoter database EPD. Nucleic Acids Res 26:353–357PubMedCrossRefGoogle Scholar
  8. 8.
    Schmid CD, Perier R, Praz V, Bucher P (2006) EPD in its twentieth year: towards complete promoter coverage of selected model organisms. Nucleic Acids Res 34:D82–D85PubMedCrossRefGoogle Scholar
  9. 9.
    Gill DR, Smyth SE, Goddard CA, Pringle IA, Higgins CF, Colledge WH, Hyde SC (2001) Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1 alpha promoter. Gene Ther 8:1539–1546PubMedCrossRefGoogle Scholar
  10. 10.
    Pringle IA, Raman S, Sharp WW, Cheng SH, Hyde SC, Gill DR (2005) Detection of plasmid DNA vectors following gene transfer to the murine airways. Gene Ther 12:1206–1214PubMedCrossRefGoogle Scholar
  11. 11.
    Davies LA, McLachlan G, Sumner-Jones SG, Ferguson D, Baker A, Tennant P, Gordon C, Vrettou C, Baker E, Zhu J et al (2008) Enhanced lung gene expression after aerosol delivery of concentrated pDNA/PEI complexes. Mol Ther 16:1283–1290PubMedCrossRefGoogle Scholar
  12. 12.
    Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266PubMedCrossRefGoogle Scholar
  13. 13.
    Song YK, Liu F, Zhang G, Liu D (2002) Hydrodynamics-based transfection: simple and efficient method for introducing and expressing transgenes in animals by intravenous injection of DNA. Methods Enzymol 346:92–105PubMedCrossRefGoogle Scholar
  14. 14.
    Rose AC, Goddard CA, Colledge WH, Cheng SH, Gill DR, Hyde SC (2002) Optimisation of real-time quantitative RT-PCR for the evaluation of non-viral mediated gene transfer to the airways. Gene Ther 9:1312–1320PubMedCrossRefGoogle Scholar
  15. 15.
    Bazzani RP, Cai Y, Hebel HL, Hyde SC, Gill DR (2011) The significance of plasmid DNA preparations contaminated with bacterial genomic DNA on inflammatory responses following delivery of lipoplexes to the murine lung. Biomaterials 32:9854–9865PubMedCrossRefGoogle Scholar
  16. 16.
    Davies LA, Hyde SC, Nunez-Alonso G, Bazzani RP, Harding-Smith R, Pringle IA, Lawton AE, Abdullah S, Roberts TC, McCormick D et al (2012) The use of CpG-free plasmids to mediate persistent gene expression following repeated aerosol delivery of pDNA/PEI complexes. Biomaterials 33:5618–5627Google Scholar
  17. 17.
    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191PubMedCrossRefGoogle Scholar
  18. 18.
    Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103:1412–1417PubMedCrossRefGoogle Scholar
  19. 19.
    Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res 24:3439–3452PubMedCrossRefGoogle Scholar
  20. 20.
    Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220:49–65PubMedCrossRefGoogle Scholar
  21. 21.
    McLachlan G, Davidson H, Holder E, Davies LA, Pringle IA, Sumner-Jones SG, Baker A, Tennant P, Gordon C, Vrettou C et al (2011) Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther 18:996–1005PubMedCrossRefGoogle Scholar
  22. 22.
    Riu E, Chen ZY, Xu H, He CY, Kay MA (2007) Histone modifications are associated with the persistence or silencing of vector-mediated transgene expression in vivo. Mol Ther 15:1348–1355PubMedCrossRefGoogle Scholar
  23. 23.
    Zabner J, Cheng SH, Meeker D, Launspach J, Balfour R, Perricone MA, Morris JE, Marshall J, Fasbender A, Smith AE et al (1997) Comparison of DNA–lipid complexes and DNA alone for gene transfer to cystic fibrosis airway epithelia in vivo. J Clin Invest 100:1529–1537PubMedCrossRefGoogle Scholar
  24. 24.
    Davies JC, Davies G, Gill DR, Hyde SC, Boyd AC, Innes JA, Porteous DJ, Cheng SH, Scheule RK, Higgins TH, Griesenbach U, Alton EW (2011) Safety and expression of a single dose of lipid-mediated CFTR gene therapy to the upper and lower airways of patients with CF. Pediatric Pulmonol 46(S34):281–281Google Scholar
  25. 25.
    Porteous DJ, Dorin JR, McLachlan G, Davidson-Smith H, Davidson H, Stevenson BJ, Carothers AD, Wallace WA, Moralee S, Hoenes C et al (1997) Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther 4:210–218PubMedCrossRefGoogle Scholar
  26. 26.
    Konstan MW, Davis PB, Wagener JS, Hilliard KA, Stern RC, Milgram LJ, Kowalczyk TH, Hyatt SL, Fink TL, Gedeon CR et al (2004) Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther 15:1255–1269PubMedCrossRefGoogle Scholar
  27. 27.
    Gill DR, Southern KW, Mofford KA, Seddon T, Huang L, Sorgi F, Thomson A, MacVinish LJ, Ratcliff R, Bilton D et al (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther 4:199–209PubMedCrossRefGoogle Scholar
  28. 28.
    Hyde SC, Southern KW, Gileadi U, Fitzjohn EM, Mofford KA, Waddell BE, Gooi HC, Goddard CA, Hannavy K, Smyth SE et al (2000) Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther 7:1156–1165PubMedCrossRefGoogle Scholar
  29. 29.
    Yew NS, Wysokenski DM, Wang KX, Ziegler RJ, Marshall J, McNeilly D, Cherry M, Osburn W, Cheng SH (1997) Optimization of plasmid vectors for high-level expression in lung epithelial cells. Hum Gene Ther 8:575–584PubMedCrossRefGoogle Scholar
  30. 30.
    Kuramoto T, Nishikawa M, Thanaketpaisarn O, Okabe T, Yamashita F, Hashida M (2006) Use of lipoplex-induced nuclear factor-kappaB activation to enhance transgene expression by lipoplex in mouse lung. J Gene Med 8:53–62PubMedCrossRefGoogle Scholar
  31. 31.
    Breuzard G, Tertil M, Goncalves C, Cheradame H, Geguan P, Pichon C, Midoux P (2008) Nuclear delivery of NFkappaB-assisted DNA/polymer complexes: plasmid DNA quantitation by confocal laser scanning microscopy and evidence of nuclear polyplexes by FRET imaging. Nucleic Acids Res 36:e71PubMedCrossRefGoogle Scholar
  32. 32.
    Worthington J, Robson T, Scott S, Hirst D (2005) Evaluation of a synthetic CArG promoter for nitric oxide synthase gene therapy of cancer. Gene Ther 12:1417–1423PubMedCrossRefGoogle Scholar
  33. 33.
    Szymanski P, Anwer K, Sullivan SM (2006) Development and characterization of a synthetic promoter for selective expression in proliferating endothelial cells. J Gene Med 8:514–523PubMedCrossRefGoogle Scholar
  34. 34.
    Santilli G, Almarza E, Brendel C, Choi U, Beilin C, Blundell MP, Haria S, Parsley KL, Kinnon C, Malech HL et al (2010) Biochemical correction of X-CGD by a novel chimeric promoter regulating high levels of transgene expression in myeloid cells. Mol Ther 19:122–132PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ian A. Pringle
    • 1
    • 3
  • Deborah R. Gill
    • 1
    • 3
  • Mary M. Connolly
    • 1
    • 3
  • Anna E. Lawton
    • 1
    • 3
  • Anne-Marie Hewitt
    • 1
    • 3
  • Graciela Nunez-Alonso
    • 1
    • 3
  • Seng H. Cheng
    • 2
  • Ronald K. Scheule
    • 2
  • Lee A. Davies
    • 1
    • 3
  • Stephen C. Hyde
    • 1
    • 3
  1. 1.GeneMedicine Research Group, NDCLS, John Radcliffe HospitalUniversity of OxfordOxfordUK
  2. 2.Genzyme CorporationFraminghamUSA
  3. 3.The UK Cystic Fibrosis Gene Therapy ConsortiumOxfordUK

Personalised recommendations