Skip to main content

Advertisement

Log in

Homeostatic chemokines guide lymphoma cells to tumor growth-promoting niches within secondary lymphoid organs

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The interaction between lymphoid tumor cells and their tissue microenvironment is thought to promote dissemination and progression of lymphoma. Those type of interactions consists of at least three cornerstones, among them mesenchymal- or bone marrow-derived stromal cells, cells of the innate or adaptive immune response, and the lymphoma cells themselves. The molecular pathways of crosstalk between the lymphoma cells and their nursing stroma are not well understood and their dissection is challenging because of (1) the complexity of stroma cell subpopulations, (2) kinetic and developmental transitions/switches of stroma composition, and (3) inherent technical difficulties to isolate and analyze defined stroma cell subsets. However, recent studies of bone marrow stroma interaction with leukemia or lymphoma cells have revealed therapeutic targets involved in regulating tumor cell mobilization. Release of tumor cells from their supportive niches could be effectuated by inhibition of homing and retention signals. The present review focuses on the effects of homing receptors and cytokines attributed to lymphoid tissue formation in tumor–stroma interactions within secondary lymphoid tissues. We discuss possible cellular and molecular mechanisms of lymphoma–stroma crosstalk and highlight novel therapeutic strategies based on the disruption of tumor–stroma interaction in secondary lymphoid organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lenz G, Staudt LM (2010) Aggressive lymphomas. N Engl J Med 362:1417–1429

    Article  PubMed  CAS  Google Scholar 

  2. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, Delaney A, Jones SJ, Iqbal J, Weisenburger DD et al (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 362:875–885

    Article  PubMed  CAS  Google Scholar 

  3. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, Xu W, Tan B, Goldschmidt N, Iqbal J et al (2008) Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359:2313–2323

    Article  PubMed  CAS  Google Scholar 

  4. Mueller SN, Germain RN (2009) Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 9:618–629

    PubMed  CAS  Google Scholar 

  5. Roozendaal R, Mebius RE (2011) Stromal cell-immune cell interactions. Annu Rev Immunol 29:23–43

    Article  PubMed  CAS  Google Scholar 

  6. Muller G, Lipp M (2003) Concerted action of the chemokine and lymphotoxin system in secondary lymphoid-organ development. Curr Opin Immunol 15:217–224

    Article  PubMed  CAS  Google Scholar 

  7. Muller G, Hopken UE, Lipp M (2003) The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol Rev 195:117–135

    Article  PubMed  Google Scholar 

  8. Ware CF (2005) Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol 23:787–819

    Article  PubMed  CAS  Google Scholar 

  9. Muller G, Hopken UE, Stein H, Lipp M (2002) Systemic immunoregulatory and pathogenic functions of homeostatic chemokine receptors. J Leukoc Biol 72:1–8

    PubMed  CAS  Google Scholar 

  10. Lopez-Giral S, Quintana NE, Cabrerizo M, Alfonso-Perez M, Sala-Valdes M, De Soria VG, Fernandez-Ranada JM, Fernandez-Ruiz E, Munoz C (2004) Chemokine receptors that mediate B cell homing to secondary lymphoid tissues are highly expressed in B cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with widespread nodular dissemination. J Leukoc Biol 76:462–471

    Article  PubMed  CAS  Google Scholar 

  11. Mazzucchelli L, Blaser A, Kappeler A, Scharli P, Laissue JA, Baggiolini M, Uguccioni M (1999) BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-associated lymphoid tissue and gastric lymphoma. J Clin Invest 104:R49–54

    Article  PubMed  CAS  Google Scholar 

  12. Kahnert A, Hopken UE, Stein M, Bandermann S, Lipp M, Kaufmann SH (2007) Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J Infect Dis 195:46–54

    Article  PubMed  CAS  Google Scholar 

  13. Winter S, Loddenkemper C, Aebischer A, Rabel K, Hoffmann K, Meyer TF, Lipp M, Hopken UE (2010) The chemokine receptor CXCR5 is pivotal for ectopic mucosa-associated lymphoid tissue neogenesis in chronic Helicobacter pylori-induced inflammation. J Mol Med (Berl) 88:1169–1180

    Article  CAS  Google Scholar 

  14. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87:1037–1047

    Article  PubMed  CAS  Google Scholar 

  15. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33

    Article  PubMed  CAS  Google Scholar 

  16. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    Article  PubMed  CAS  Google Scholar 

  17. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272:60–66

    Article  PubMed  CAS  Google Scholar 

  18. Jalkanen S, Reichert RA, Gallatin WM, Bargatze RF, Weissman IL, Butcher EC (1986) Homing receptors and the control of lymphocyte migration. Immunol Rev 91:39–60

    Article  PubMed  CAS  Google Scholar 

  19. Pals ST, de Gorter DJ, Spaargaren M (2007) Lymphoma dissemination: the other face of lymphocyte homing. Blood 110:3102–3111

    Article  PubMed  CAS  Google Scholar 

  20. Drillenburg P, Pals ST (2000) Cell adhesion receptors in lymphoma dissemination. Blood 95:1900–1910

    PubMed  CAS  Google Scholar 

  21. Hopken UE, Foss HD, Meyer D, Hinz M, Leder K, Stein H, Lipp M (2002) Up-regulation of the chemokine receptor CCR7 in classical but not in lymphocyte-predominant Hodgkin disease correlates with distinct dissemination of neoplastic cells in lymphoid organs. Blood 99:1109–1116

    Article  PubMed  CAS  Google Scholar 

  22. Burger JA, Kipps TJ (2002) Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma 43:461–466

    Article  PubMed  CAS  Google Scholar 

  23. Trentin L, Cabrelle A, Facco M, Carollo D, Miorin M, Tosoni A, Pizzo P, Binotto G, Nicolardi L, Zambello R et al (2004) Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood 104:502–508

    Article  PubMed  CAS  Google Scholar 

  24. Chunsong H, Yuling H, Li W, Jie X, Gang Z, Qiuping Z, Qingping G, Kejian Z, Li Q, Chang AE et al (2006) CXC chemokine ligand 13 and CC chemokine ligand 19 cooperatively render resistance to apoptosis in B cell lineage acute and chronic lymphocytic leukemia CD23 + CD5+ B cells. J Immunol 177:6713–6722

    PubMed  Google Scholar 

  25. Husson H, Freedman AS, Cardoso AA, Schultze J, Munoz O, Strola G, Kutok J, Carideo EG, De Beaumont R, Caligaris-Cappio F et al (2002) CXCL13 (BCA-1) is produced by follicular lymphoma cells: role in the accumulation of malignant B cells. Br J Haematol 119:492–495

    Article  PubMed  CAS  Google Scholar 

  26. Rodig SJ, Jones D, Shahsafaei A, Dorfman DM (2002) CCR6 is a functional chemokine receptor that serves to identify select B-cell non-Hodgkin’s lymphomas. Hum Pathol 33:1227–1233

    Article  PubMed  CAS  Google Scholar 

  27. Rehm A, Anagnostopoulos I, Gerlach K, Broemer M, Scheidereit C, Johrens K, Hubler M, Hetzer R, Stein H, Lipp M, Dorken B, Hopken UE (2009) Identification of a chemokine receptor profile characteristic for mediastinal large B-cell lymphoma. Int J Cancer 125:2367–2374

    Google Scholar 

  28. Kuppers R (2009) The biology of Hodgkin’s lymphoma. Nat Rev Cancer 9:15–27

    Article  PubMed  CAS  Google Scholar 

  29. Yang J, Wang S, Zhao G, Sun B (2011) Effect of chemokine receptors CCR7 on disseminated behavior of human T cell lymphoma: clinical and experimental study. J Exp Clin Cancer Res 30:51

    Article  PubMed  CAS  Google Scholar 

  30. Carver BS, Pandolfi PP (2006) Mouse modeling in oncologic preclinical and translational research. Clin Cancer Res 12:5305–5311

    Article  PubMed  CAS  Google Scholar 

  31. Tarantul VZ (2004) Transgenic mice as an in vivo model of lymphomagenesis. Int Rev Cytol 236:123–180

    Article  PubMed  CAS  Google Scholar 

  32. Bernardi R, Grisendi S, Pandolfi PP (2002) Modelling haematopoietic malignancies in the mouse and therapeutical implications. Oncogene 21:3445–3458

    Article  PubMed  CAS  Google Scholar 

  33. Seldin DC (1995) New models of lymphoma in transgenic mice. Curr Opin Immunol 7:665–673

    Article  PubMed  CAS  Google Scholar 

  34. Dierks C, Grbic J, Zirlik K, Beigi R, Englund NP, Guo GR, Veelken H, Engelhardt M, Mertelsmann R, Kelleher JF et al (2007) Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 13:944–951

    Article  PubMed  CAS  Google Scholar 

  35. Refaeli Y, Young RM, Turner BC, Duda J, Field KA, Bishop JM (2008) The B cell antigen receptor and overexpression of MYC can cooperate in the genesis of B cell lymphomas. PLoS Biol 6:e152

    Article  PubMed  CAS  Google Scholar 

  36. Cyster JG (2010) B cell follicles and antigen encounters of the third kind. Nat Immunol 11:989–996

    Article  PubMed  CAS  Google Scholar 

  37. Langdon WY, Harris AW, Cory S, Adams JM (1986) The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 47:11–18

    Article  PubMed  CAS  Google Scholar 

  38. Reimann M, Loddenkemper C, Rudolph C, Schildhauer I, Teichmann B, Stein H, Schlegelberger B, Dorken B, Schmitt CA (2007) The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 110:2996–3004

    Article  PubMed  CAS  Google Scholar 

  39. Reimann M, Schmitt CA, Lee S (2011) Non-cell-autonomous tumor suppression: oncogene-provoked apoptosis promotes tumor cell senescence via stromal crosstalk. J Mol Med (Berl) 89:869–875

    Article  Google Scholar 

  40. Maclean KH, Dorsey FC, Cleveland JL, Kastan MB (2008) Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest 118:79–88

    Article  PubMed  CAS  Google Scholar 

  41. Ruddell A, Mezquita P, Brandvold KA, Farr A, Iritani BM (2003) B lymphocyte-specific c-Myc expression stimulates early and functional expansion of the vasculature and lymphatics during lymphomagenesis. Am J Pathol 163:2233–2245

    Article  PubMed  CAS  Google Scholar 

  42. Rehm A, Mensen A, Schradi K, Gerlach K, Wittstock S, Winter S, Buchner G, Dorken B, Lipp M, Hopken UE (2011) Cooperative function of CCR7 and lymphotoxin in the formation of a lymphoma-permissive niche within murine secondary lymphoid organs. Blood 118:1020–1033

    Article  PubMed  CAS  Google Scholar 

  43. Buonamici S, Trimarchi T, Ruocco MG, Reavie L, Cathelin S, Mar BG, Klinakis A, Lukyanov Y, Tseng JC, Sen F et al (2009) CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature 459:1000–1004

    Article  PubMed  CAS  Google Scholar 

  44. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25:989–1001

    Article  PubMed  CAS  Google Scholar 

  45. Carbone A, Gloghini A, Gruss HJ, Pinto A (1995) CD40 ligand is constitutively expressed in a subset of T cell lymphomas and on the microenvironmental reactive T cells of follicular lymphomas and Hodgkin’s disease. Am J Pathol 147:912–922

    PubMed  CAS  Google Scholar 

  46. Pangault C, Ame-Thomas P, Ruminy P, Rossille D, Caron G, Baia M, De Vos J, Roussel M, Monvoisin C, Lamy T et al (2010) Follicular lymphoma cell niche: identification of a preeminent IL-4-dependent T(FH)-B cell axis. Leukemia 24:2080–2089

    Article  PubMed  CAS  Google Scholar 

  47. Dubois B, Vanbervliet B, Fayette J, Massacrier C, Van Kooten C, Briere F, Banchereau J, Caux C (1997) Dendritic cells enhance growth and differentiation of CD40-activated B lymphocytes. J Exp Med 185:941–951

    Article  PubMed  CAS  Google Scholar 

  48. Craxton A, Magaletti D, Ryan EJ, Clark EA (2003) Macrophage- and dendritic cell-dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 101:4464–4471

    Article  PubMed  CAS  Google Scholar 

  49. Mueller CG, Boix C, Kwan WH, Daussy C, Fournier E, Fridman WH, Molina TJ (2007) Critical role of monocytes to support normal B cell and diffuse large B cell lymphoma survival and proliferation. J Leukoc Biol 82:567–575

    Article  PubMed  CAS  Google Scholar 

  50. He B, Chadburn A, Jou E, Schattner EJ, Knowles DM, Cerutti A (2004) Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol 172:3268–3279

    PubMed  CAS  Google Scholar 

  51. Ogden CA, Pound JD, Batth BK, Owens S, Johannessen I, Wood K, Gregory CD (2005) Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J Immunol 174:3015–3023

    PubMed  CAS  Google Scholar 

  52. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9

    Article  PubMed  Google Scholar 

  53. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952

    Article  PubMed  CAS  Google Scholar 

  54. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

  55. Fricke I, Gabrilovich DI (2006) Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Invest 35:459–483

    Article  PubMed  CAS  Google Scholar 

  56. Norian LA, Rodriguez PC, O’Mara LA, Zabaleta J, Ochoa AC, Cella M, Allen PM (2009) Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism. Cancer Res 69:3086–3094

    Article  PubMed  CAS  Google Scholar 

  57. Aspord C, Pedroza-Gonzalez A, Gallegos M, Tindle S, Burton EC, Su D, Marches F, Banchereau J, Palucka AK (2007) Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med 204:1037–1047

    Article  PubMed  CAS  Google Scholar 

  58. Janikashvili N, Bonnotte B, Katsanis E, Larmonier N The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Dev Immunol 2011: 430394

  59. Lin Y, Gustafson MP, Bulur PA, Gastineau DA, Witzig TE, Dietz AB (2010) Immunosuppressive CD14 + HLA-DR(low)/-monocytes in B-cell non-Hodgkin lymphoma. Blood 117:872–881

    Article  PubMed  CAS  Google Scholar 

  60. Maby-El Hajjami H, Ame-Thomas P, Pangault C, Tribut O, DeVos J, Jean R, Bescher N, Monvoisin C, Dulong J, Lamy T et al (2009) Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase. Cancer Res 69:3228–3237

    Article  PubMed  CAS  Google Scholar 

  61. Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S, Guillaudeux T, Lamy T, Fest T, Tarte K (2007) Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood 109:693–702

    Article  PubMed  CAS  Google Scholar 

  62. Krampera M (2011) Mesenchymal stromal cell ‘licensing’: a multistep process. Leukemia 25:1408–1414

    Article  PubMed  CAS  Google Scholar 

  63. Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352:804–815

    Article  PubMed  CAS  Google Scholar 

  64. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F (2009) The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 114:3367–3375

    Article  PubMed  CAS  Google Scholar 

  65. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P (1998) Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 91:2387–2396

    PubMed  CAS  Google Scholar 

  66. Vincent AM, Cawley JC, Burthem J (1996) Integrin function in chronic lymphocytic leukemia. Blood 87:4780–4788

    PubMed  CAS  Google Scholar 

  67. Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG (2000) Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci USA 97:12694–12699

    Article  PubMed  CAS  Google Scholar 

  68. Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, Kurrer MO, Bremer J, Iezzi G, Graf R, Clavien PA et al (2009) A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 16:295–308

    Article  PubMed  CAS  Google Scholar 

  69. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464:302–305

    Article  PubMed  CAS  Google Scholar 

  70. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  71. Browning JL (2008) Inhibition of the lymphotoxin pathway as a therapy for autoimmune disease. Immunol Rev 223:202–220

    Article  PubMed  CAS  Google Scholar 

  72. Wolf MJ, Seleznik GM, Zeller N, Heikenwalder M (2010) The unexpected role of lymphotoxin beta receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development. Oncogene 29:5006–5018

    Article  PubMed  CAS  Google Scholar 

  73. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S (2010) From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 10:37–50

    PubMed  CAS  Google Scholar 

  74. Burger JA (2011) Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. Hematol Am Soc Hematol Educ Program 2011:96–103

    Article  Google Scholar 

  75. Burger JA (2010) Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL): from understanding the basics towards therapeutic targeting. Semin Cancer Biol 20:424–430

    Article  PubMed  CAS  Google Scholar 

  76. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A, Schaefer-Cutillo J, De Vos S, Sinha R, Leonard JP et al (2010) Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 115:2578–2585

    Article  PubMed  CAS  Google Scholar 

  77. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, Li S, Pan Z, Thamm DH, Miller RA et al (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA 107:13075–13080

    Article  PubMed  Google Scholar 

  78. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, Byrd JC, Tyner JW, Loriaux MM, Deininger M et al (2011) CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117:591–594

    Article  PubMed  CAS  Google Scholar 

  79. Quiroga MP, Balakrishnan K, Kurtova AV, Sivina M, Keating MJ, Wierda WG, Gandhi V, Burger JA (2009) B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 114:1029–1037

    Article  PubMed  CAS  Google Scholar 

  80. Hu Y, Gale M, Shields J, Garron C, Swistak M, Nguyen TH, Jacques G, Fogle R, Siders W, Kaplan J (2012) Enhancement of the anti-tumor activity of therapeutic monoclonal antibodies by CXCR4 antagonists. Leuk Lymphoma 53:130–138

    Article  PubMed  CAS  Google Scholar 

  81. O’Callaghan K, Lee L, Nguyen N, Hsieh MY, Kaneider NC, Klein AK, Sprague K, Van Etten RA, Kuliopulos A, Covic L (2012) Targeting CXCR4 with cell-penetrating pepducins in lymphoma and lymphocytic leukemia. Blood 119:1717–1725

    Article  PubMed  CAS  Google Scholar 

  82. Forster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371

    Article  PubMed  CAS  Google Scholar 

  83. Winter S, Rehm A, Wichner K, Scheel T, Batra A, Siegmund B, Berek C, Lipp M, Hopken UE (2011) Manifestation of spontaneous and early autoimmune gastritis in CCR7-deficient mice. Am J Pathol 179:754–765

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Martin Lipp and Bernd Dörken for helpful discussions and we thank Kristina Schradi for critical reading of the manuscript. This work was supported by the German Cancer Foundation and the Berliner Krebshilfe.

Conflict of interest statement

The authors declare that they have no conflict of interests or financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta E. Höpken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höpken, U.E., Rehm, A. Homeostatic chemokines guide lymphoma cells to tumor growth-promoting niches within secondary lymphoid organs. J Mol Med 90, 1237–1245 (2012). https://doi.org/10.1007/s00109-012-0906-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0906-z

Keywords

Navigation