Skip to main content
Log in

Selenoprotein N in skeletal muscle: from diseases to function

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Selenoprotein N (SelN) deficiency causes several inherited neuromuscular disorders collectively termed SEPN1-related myopathies, characterized by early onset, generalized muscle atrophy, and muscle weakness affecting especially axial muscles and leading to spine rigidity, severe scoliosis, and respiratory insufficiency. SelN is ubiquitously expressed and is located in the membrane of the endoplasmic reticulum; however, its function remains elusive. The predominant expression of SelN in human fetal tissues and the embryonic muscle phenotype reported in mutant zebrafish suggest that it is involved in myogenesis. In mice, SelN is also mostly expressed during embryogenesis and especially in the myotome, but no defect was detected in muscle development and growth in the Sepn1 knock-out mouse model. By contrast, we recently demonstrated that SelN is essential for muscle regeneration and satellite cell maintenance in mice and humans, hence opening new avenues regarding the pathomechanism(s) leading to SEPN1-related myopathies. At the cellular level, recent data suggested that SelN participates in oxidative and calcium homeostasis, with a potential role in the regulation of the ryanodine receptor activity. Despite the recent and exciting progress regarding the physiological function(s) of SelN in muscle tissue, the pathogenesis leading to SEPN1-related myopathies remains largely unknown, with several unsolved questions, and no treatment available. In this review, we introduce SelN, its properties and expression pattern in zebrafish, mice, and humans, and we discuss its potential roles in muscle tissue and the ensuing clues for the development of therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pinsent J (1954) The need for selenite and molybdate in the formation of formic dehydrogenase by members of the Coli-aerogenes group of bacteria. Biochem J 57:10–16

    CAS  PubMed  Google Scholar 

  2. Jacob C, Giles GI, Giles NM, Sies H (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed Engl 42:4742–4758

    Article  CAS  PubMed  Google Scholar 

  3. Patching SG, Gardiner PH (1999) Recent developments in selenium metabolism and chemical speciation: a review. J Trace Elem Med Biol 13:193–214

    Article  CAS  PubMed  Google Scholar 

  4. Andreesen JR, Ljungdahl LG (1973) Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. J Bacteriol 116:867–873

    CAS  PubMed  Google Scholar 

  5. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  6. Yang GQ, Wang SZ, Zhou RH, Sun SZ (1983) Endemic selenium intoxication of humans in China. Am J Clin Nutr 37:872–881

    CAS  PubMed  Google Scholar 

  7. Fan AM, Kizer KW (1990) Selenium. Nutritional, toxicologic, and clinical aspects. West J Med 153:160–167

    CAS  PubMed  Google Scholar 

  8. Bellinger FP, Raman AV, Reeves MA, Berry MJ (2009) Regulation and function of selenoproteins in human disease. Biochem J 422:11–22

    Article  CAS  PubMed  Google Scholar 

  9. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    Article  CAS  PubMed  Google Scholar 

  10. Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta 1790:1424–1428

    Article  CAS  PubMed  Google Scholar 

  11. Rayman MP, Infante HG, Sargent M (2008) Food-chain selenium and human health: spotlight on speciation. Br J Nutr 100:238–253

    CAS  PubMed  Google Scholar 

  12. Rederstorff M, Krol A, Lescure A (2006) Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci 63:52–59

    Article  CAS  PubMed  Google Scholar 

  13. Lescure A, Rederstorff M, Krol A, Guicheney P, Allamand V (2009) Selenoprotein function and muscle disease. Biochim Biophys Acta 1790:1569–1574

    Article  CAS  PubMed  Google Scholar 

  14. Zhuo P, Diamond AM (2009) Molecular mechanisms by which selenoproteins affect cancer risk and progression. Biochim Biophys Acta 1790:1546–1554

    Article  CAS  PubMed  Google Scholar 

  15. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  16. Brigelius-Flohe R, Kipp A (2009) Glutathione peroxidases in different stages of carcinogenesis. Biochim Biophys Acta 1790:1555–1568

    Article  CAS  PubMed  Google Scholar 

  17. Sturchler C, Westhof E, Carbon P, Krol A (1993) Unique secondary and tertiary structural features of the eucaryotic selenocysteine tRNA(Sec). Nucleic Acids Res 21:1073–1079

    Article  CAS  PubMed  Google Scholar 

  18. Hubert N, Walczak R, Carbon P, Krol A (1996) A protein binds the selenocysteine insertion element in the 3′-UTR of mammalian selenoprotein mRNAs. Nucleic Acids Res 24:464–469

    Article  CAS  PubMed  Google Scholar 

  19. Lesoon A, Mehta A, Singh R, Chisolm GM, Driscoll DM (1997) An RNA-binding protein recognizes a mammalian selenocysteine insertion sequence element required for cotranslational incorporation of selenocysteine. Mol Cell Biol 17:1977–1985

    CAS  PubMed  Google Scholar 

  20. Allmang C, Wurth L, Krol A (2009) The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta 1790:1415–1423

    Article  CAS  PubMed  Google Scholar 

  21. Howard MT, Aggarwal G, Anderson CB, Khatri S, Flanigan KM, Atkins JF (2005) Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons. EMBO J 24:1596–1607

    Article  CAS  PubMed  Google Scholar 

  22. Maiti B, Arbogast S, Allamand V, Moyle MW, Anderson CB, Richard P, Guicheney P, Ferreiro A, Flanigan KM, Howard MT (2009) A mutation in the SEPN1 selenocysteine redefinition element (SRE) reduces selenocysteine incorporation and leads to SEPN1-related myopathy. Hum Mutat 30:411–416

    Article  CAS  PubMed  Google Scholar 

  23. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A (2000) Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J 19:4796–4805

    Article  CAS  PubMed  Google Scholar 

  24. Copeland PR, Driscoll DM (1999) Purification, redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis. J Biol Chem 274:25447–25454

    Article  CAS  PubMed  Google Scholar 

  25. Halic M, Becker T, Frank J, Spahn CM, Beckmann R (2005) Localization and dynamic behavior of ribosomal protein L30e. Nat Struct Mol Biol 12:467–468

    Article  CAS  PubMed  Google Scholar 

  26. Kinzy SA, Caban K, Copeland PR (2005) Characterization of the SECIS binding protein 2 complex required for the co-translational insertion of selenocysteine in mammals. Nucleic Acids Res 33:5172–5180

    Article  CAS  PubMed  Google Scholar 

  27. Arner ES (2010) Selenoproteins—what unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res 316:1296–1303

    Article  CAS  PubMed  Google Scholar 

  28. Lee SR, Bar-Noy S, Kwon J, Levine RL, Stadtman TC, Rhee SG (2000) Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc Natl Acad Sci USA 97:2521–2526

    Article  CAS  PubMed  Google Scholar 

  29. Zhong L, Arner ES, Holmgren A (2000) Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine–selenocysteine sequence. Proc Natl Acad Sci USA 97:5854–5859

    Article  CAS  PubMed  Google Scholar 

  30. Bar-Noy S, Gorlatov SN, Stadtman TC (2001) Overexpression of wild type and SeCys/Cys mutant of human thioredoxin reductase in E. coli: the role of selenocysteine in the catalytic activity. Free Radic Biol Med 30:51–61

    Article  CAS  PubMed  Google Scholar 

  31. Arner ES (2009) Focus on mammalian thioredoxin reductases—important selenoproteins with versatile functions. Biochim Biophys Acta 1790:495–526

    Article  CAS  PubMed  Google Scholar 

  32. Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790:1478–1485

    Article  CAS  PubMed  Google Scholar 

  33. Lescure A, Gautheret D, Carbon P, Krol A (1999) Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J Biol Chem 274:38147–38154

    Article  CAS  PubMed  Google Scholar 

  34. Lescure A, Castets P, Grunwald D, Allamand V, Howard M (2012) Selenoprotein N: its role in disease. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium: its molecular biology and role in human health. Springer, Berlin, pp 283–294

    Google Scholar 

  35. Moghadaszadeh B, Petit N, Jaillard C, Brockington M, Roy SQ, Merlini L, Romero N, Estournet B, Desguerre I, Chaigne D et al (2001) Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet 29:17–18

    Article  CAS  PubMed  Google Scholar 

  36. Schmid CW, Jelinek WR (1982) The Alu family of dispersed repetitive sequences. Science 216:1065–1070

    Article  CAS  PubMed  Google Scholar 

  37. Makalowski W, Mitchell GA, Labuda D (1994) Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet 10:188–193

    Article  CAS  PubMed  Google Scholar 

  38. Petit N, Lescure A, Rederstorff M, Krol A, Moghadaszadeh B, Wewer UM, Guicheney P (2003) Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum Mol Genet 12:1045–1053

    Article  CAS  PubMed  Google Scholar 

  39. Lin L, Shen S, Tye A, Cai JJ, Jiang P, Davidson BL, Xing Y (2008) Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet 4:e1000225

    Article  PubMed  CAS  Google Scholar 

  40. Mayer BJ (2001) SH3 domains: complexity in moderation. J Cell Sci 114:1253–1263

    CAS  PubMed  Google Scholar 

  41. Li SS (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653

    Article  CAS  PubMed  Google Scholar 

  42. Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN (2010) Structure–function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid Redox Signal 12:839–849

    Article  CAS  PubMed  Google Scholar 

  43. Mercuri E, Talim B, Moghadaszadeh B, Petit N, Brockington M, Counsell S, Guicheney P, Muntoni F, Merlini L (2002) Clinical and imaging findings in six cases of congenital muscular dystrophy with rigid spine syndrome linked to chromosome 1p (RSMD1). Neuromuscul Disord 12:631–638

    Article  PubMed  Google Scholar 

  44. Arkader A, Hosalkar H, Dormans JP (2005) Scoliosis correction in an adolescent with a rigid spine syndrome: case report. Spine (Phila Pa 1976) 30:E623–E628

    Article  Google Scholar 

  45. Mercuri E, Clements E, Offiah A, Pichiecchio A, Vasco G, Bianco F, Berardinelli A, Manzur A, Pane M, Messina S et al (2010) Muscle magnetic resonance imaging involvement in muscular dystrophies with rigidity of the spine. Ann Neurol 67:201–208

    Article  PubMed  Google Scholar 

  46. Clarke NF, Kidson W, Quijano-Roy S, Estournet B, Ferreiro A, Guicheney P, Manson JI, Kornberg AJ, Shield LK, North KN (2006) SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol 59:546–552

    Article  CAS  PubMed  Google Scholar 

  47. Labunskyy VM, Lee BC, Handy DE, Loscalzo J, Hatfield DL, Gladyshev VN (2011) Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid Redox Signal 14:2327–2336

    Article  CAS  PubMed  Google Scholar 

  48. Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S, Bruce C, Shields BJ, Skiba B, Ooms LM et al (2009) Reactive oxygen species enhance insulin sensitivity. Cell Metab 10:260–272

    Article  CAS  PubMed  Google Scholar 

  49. Lei XG, Vatamaniuk MZ (2011) Two tales of antioxidant enzymes on β cells and diabetes. Antioxid Redox Signal 14:489–503. doi:10.1089/ars.2010.3416

    Article  CAS  PubMed  Google Scholar 

  50. Scoto M, Cirak S, Mein R, Feng L, Manzur AY, Robb S, Childs AM, Quinlivan RM, Roper H, Jones DH et al (2011) SEPN1-related myopathies: clinical course in a large cohort of patients. Neurology 76:2073–2078

    Article  CAS  PubMed  Google Scholar 

  51. Cagliani R, Fruguglietti ME, Berardinelli A, D'Angelo MG, Prelle A, Riva S, Napoli L, Gorni K, Orcesi S, Lamperti C et al (2011) New molecular findings in congenital myopathies due to selenoprotein N gene mutations. J Neurol Sci 300:107–113

    Article  CAS  PubMed  Google Scholar 

  52. Moghadaszadeh B, Desguerre I, Topaloglu H, Muntoni F, Pavek S, Sewry C, Mayer M, Fardeau M, Tome FM, Guicheney P (1998) Identification of a new locus for a peculiar form of congenital muscular dystrophy with early rigidity of the spine, on chromosome 1p35–36. Am J Hum Genet 62:1439–1445

    Article  CAS  PubMed  Google Scholar 

  53. Flanigan KM, Kerr L, Bromberg MB, Leonard C, Tsuruda J, Zhang P, Gonzalez-Gomez I, Cohn R, Campbell KP, Leppert M (2000) Congenital muscular dystrophy with rigid spine syndrome: a clinical, pathological, radiological, and genetic study. Ann Neurol 47:152–161

    Article  CAS  PubMed  Google Scholar 

  54. Tajsharghi H, Darin N, Tulinius M, Oldfors A (2005) Early onset myopathy with a novel mutation in the selenoprotein N gene (SEPN1). Neuromuscul Disord 15:299–302

    Article  PubMed  Google Scholar 

  55. Okamoto Y, Takashima H, Higuchi I, Matsuyama W, Suehara M, Nishihira Y, Hashiguchi A, Hirano R, Ng AR, Nakagawa M et al (2006) Molecular mechanism of rigid spine with muscular dystrophy type 1 caused by novel mutations of selenoprotein N gene. Neurogenetics 7:175–183

    Article  CAS  PubMed  Google Scholar 

  56. Moghadaszadeh B, Topaloglu H, Merlini L, Muntoni F, Estournet B, Sewry C, Naom I, Barois A, Fardeau M, Tome FM et al (1999) Genetic heterogeneity of congenital muscular dystrophy with rigid spine syndrome. Neuromuscul Disord 9:376–382

    Article  CAS  PubMed  Google Scholar 

  57. Ferreiro A, Ceuterick-de Groote C, Marks JJ, Goemans N, Schreiber G, Hanefeld F, Fardeau M, Martin JJ, Goebel HH, Richard P et al (2004) Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 55:676–686

    Article  CAS  PubMed  Google Scholar 

  58. Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bönnemann C, Jungbluth H, Straub V, Villanova M, Leroy JP et al (2002) Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet 71:739–749

    Article  PubMed  Google Scholar 

  59. Sponholz S, von der Hagen M, Hahn G, Seifert J, Richard P, Stoltenburg-Didinger G, Ferreiro A, Kaindl AM (2006) Selenoprotein N muscular dystrophy: differential diagnosis for early-onset limited mobility of the spine. J Child Neurol 21:316–320

    Article  PubMed  Google Scholar 

  60. Herasse M, Parain K, Marty I, Monnier N, Kaindl AM, Leroy JP, Richard P, Lunardi J, Romero NB, Ferreiro A (2007) Abnormal distribution of calcium-handling proteins: a novel distinctive marker in core myopathies. J Neuropathol Exp Neurol 66:57–65

    Article  CAS  PubMed  Google Scholar 

  61. Schara U, Kress W, Bönnemann CG, Breitbach-Faller N, Korenke CG, Schreiber G, Stoetter M, Ferreiro A, von der Hagen M (2008) The phenotype and long-term follow-up in 11 patients with juvenile selenoprotein N1-related myopathy. Eur J Paediatr Neurol 12:224–230

    Article  PubMed  Google Scholar 

  62. Boyden SE, Salih MA, Duncan AR, White AJ, Estrella EA, Burgess SL, Seidahmed MZ, Al-Jarallah AS, Alkhalidi HM, Al-Maneea WM et al (2010) Efficient identification of novel mutations in patients with limb girdle muscular dystrophy. Neurogenetics 11:449–455

    Article  CAS  PubMed  Google Scholar 

  63. Rederstorff M, Allamand V, Guicheney P, Gartioux C, Richard P, Chaigne D, Krol A, Lescure A (2008) Ex vivo correction of selenoprotein N deficiency in rigid spine muscular dystrophy caused by a mutation in the selenocysteine codon. Nucleic Acids Res 36:237–244

    Article  CAS  PubMed  Google Scholar 

  64. Allamand V, Richard P, Lescure A, Ledeuil C, Desjardin D, Petit N, Gartioux C, Ferreiro A, Krol A, Pellegrini N et al (2006) A single homozygous point mutation in a 3′untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy. EMBO Rep 7:450–454

    CAS  PubMed  Google Scholar 

  65. Schoenmakers E, Agostini M, Mitchell C, Schoenmakers N, Papp L, Rajanayagam O, Padidela R, Ceron-Gutierrez L, Doffinger R, Prevosto C et al (2010) Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest 120:4220–4235

    Article  CAS  PubMed  Google Scholar 

  66. Dumitrescu AM, Liao XH, Abdullah MS, Lado-Abeal J, Majed FA, Moeller LC, Boran G, Schomburg L, Weiss RE, Refetoff S (2005) Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet 37:1247–1252

    Article  CAS  PubMed  Google Scholar 

  67. Park SM, Chatterjee VK (2005) Genetics of congenital hypothyroidism. J Med Genet 42:379–389

    Article  CAS  PubMed  Google Scholar 

  68. Di Cosmo C, McLellan N, Liao XH, Khanna KK, Weiss RE, Papp L, Refetoff S (2009) Clinical and molecular characterization of a novel selenocysteine insertion sequence-binding protein 2 (SBP2) gene mutation (R128X). J Clin Endocrinol Metab 94:4003–4009

    Article  PubMed  CAS  Google Scholar 

  69. Thisse C, Degrave A, Kryukov GV, Gladyshev VN, Obrecht-Pflumio S, Krol A, Thisse B, Lescure A (2003) Spatial and temporal expression patterns of selenoprotein genes during embryogenesis in zebrafish. Gene Expr Patterns 3:525–532

    Article  CAS  PubMed  Google Scholar 

  70. Jurynec MJ, Xia R, Mackrill JJ, Gunther D, Crawford T, Flanigan KM, Abramson JJ, Howard MT, Grunwald DJ (2008) Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci USA 105:12485–12490

    Article  CAS  PubMed  Google Scholar 

  71. Deniziak M, Thisse C, Rederstorff M, Hindelang C, Thisse B, Lescure A (2007) Loss of selenoprotein N function causes disruption of muscle architecture in the zebrafish embryo. Exp Cell Res 313:156–167

    Article  CAS  PubMed  Google Scholar 

  72. Castets P, Maugenre S, Gartioux C, Rederstorff M, Krol A, Lescure A, Tajbakhsh S, Allamand V, Guicheney P (2009) Selenoprotein N is dynamically expressed during mouse development and detected early in muscle precursors. BMC Dev Biol 9:46

    Article  PubMed  CAS  Google Scholar 

  73. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    Article  CAS  PubMed  Google Scholar 

  74. Rederstorff M, Castets P, Arbogast S, Lainé J, Vassilopoulos S, Beuvin M, Dubourg O, Vignaud A, Ferry A, Krol A et al (2011) Increased muscle stress-sensitivity induced by selenoprotein N inactivation in mouse: a mammalian model for SEPN1-related myopathy. PLoS One 6(8):e23094

    Article  CAS  PubMed  Google Scholar 

  75. Tajbakhsh S (2009) Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med 266:372–389

    Article  CAS  PubMed  Google Scholar 

  76. Castets P, Bertrand AT, Beuvin M, Ferry A, Le Grand F, Castets M, Chazot G, Rederstorff M, Krol A, Lescure A et al (2011) Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum Mol Genet 20:694–704

    Article  CAS  PubMed  Google Scholar 

  77. Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37:757–767

    Article  CAS  PubMed  Google Scholar 

  78. Taylor-Jones JM, McGehee RE, Rando TA, Lecka-Czernik B, Lipschitz DA, Peterson CA (2002) Activation of an adipogenic program in adult myoblasts with age. Mech Ageing Dev 123:649–661

    Article  CAS  PubMed  Google Scholar 

  79. Teboul L, Gaillard D, Staccini L, Inadera H, Amri EZ, Grimaldi PA (1995) Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem 270:28183–28187

    Article  CAS  PubMed  Google Scholar 

  80. Oguro H, Iwama A (2007) Life and death in hematopoietic stem cells. Curr Opin Immunol 19:503–509

    Article  CAS  PubMed  Google Scholar 

  81. Kim BS, Jung JS, Jang JH, Kang KS, Kang SK (2011) Nuclear Argonaute 2 regulates adipose tissue-derived stem cell survival through direct control of miR10b and selenoprotein N1 expression. Aging Cell 10:277–291

    Article  CAS  PubMed  Google Scholar 

  82. Go YM, Jones DP (2008) Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 1780:1273–1290

    Article  CAS  PubMed  Google Scholar 

  83. Stoytcheva ZR, Berry MJ (2009) Transcriptional regulation of mammalian selenoprotein expression. Biochim Biophys Acta 1790:1429–1440

    Article  CAS  PubMed  Google Scholar 

  84. Arbogast S, Ferreiro A (2010) Selenoproteins and protection against oxidative stress: selenoprotein N as a novel player at the crossroads of redox signaling and calcium homeostasis. Antioxid Redox Signal 12:893–904

    Article  CAS  PubMed  Google Scholar 

  85. Arbogast S, Beuvin M, Fraysse B, Zhou H, Muntoni F, Ferreiro A (2009) Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann Neurol 65:677–686

    Article  CAS  PubMed  Google Scholar 

  86. Moghadaszadeh B, Aracena-Parks P, Ronan M, Gasmi H, Agrawal P, Hamilton S, Beggs A (2007) SEPN1-related myopathy: a defect in redox regulation. Neuromuscul Disord 17:899–900

    Article  Google Scholar 

  87. Gao Y, Feng HC, Walder K, Bolton K, Sunderland T, Bishara N, Quick M, Kantham L, Collier GR (2004) Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress—SelS is a novel glucose-regulated protein. FEBS Lett 563:185–190

    Article  CAS  PubMed  Google Scholar 

  88. Shchedrina VA, Everley RA, Zhang Y, Gygi SP, Hatfield DL, Gladyshev VN (2011) Selenoprotein K binds multiprotein complexes and is involved in the regulation of endoplasmic reticulum homeostasis. J Biol Chem 286:42937–42948

    Article  CAS  PubMed  Google Scholar 

  89. Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL, Gladyshev VN (2001) Association between the 15-kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J Biol Chem 276:15330–15336

    Article  CAS  PubMed  Google Scholar 

  90. Porter Moore C, Zhang JZ, Hamilton SL (1999) A role for cysteine 3635 of RYR1 in redox modulation and calmodulin binding. J Biol Chem 274:36831–36834

    Article  CAS  PubMed  Google Scholar 

  91. Oba T, Kurono C, Nakajima R, Takaishi T, Ishida K, Fuller GA, Klomkleaw W, Yamaguchi M (2002) H2O2 activates ryanodine receptor but has little effect on recovery of releasable Ca2+ content after fatigue. J Appl Physiol 93:1999–2008

    CAS  PubMed  Google Scholar 

  92. Hatfield DL, Yoo MH, Carlson BA, Gladyshev VN (2009) Selenoproteins that function in cancer prevention and promotion. Biochim Biophys Acta 1790:1541–1545

    Article  CAS  PubMed  Google Scholar 

  93. Grumolato L, Ghzili H, Montero-Hadjadje M, Gasman S, Lesage J, Tanguy Y, Galas L, Ait-Ali D, Leprince J, Guerineau NC et al (2008) Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J 22:1756–1768

    Article  CAS  PubMed  Google Scholar 

  94. Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98

    Article  CAS  PubMed  Google Scholar 

  95. Li Y, Camacho P (2004) Ca2+-dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 164:35–46

    Article  CAS  PubMed  Google Scholar 

  96. Pisaniello A, Serra C, Rossi D, Vivarelli E, Sorrentino V, Molinaro M, Bouche M (2003) The block of ryanodine receptors selectively inhibits fetal myoblast differentiation. J Cell Sci 116:1589–1597

    Article  CAS  PubMed  Google Scholar 

  97. Daiho T, Kanazawa T (1994) Reduction of disulfide bonds in sarcoplasmic reticulum Ca(2+)-ATPase by dithiothreitol causes inhibition of phosphoenzyme isomerization in catalytic cycle. This reduction requires binding of both purine nucleotide and Ca2+ to enzyme. J Biol Chem 269:11060–11064

    CAS  PubMed  Google Scholar 

  98. Viner RI, Ferrington DA, Williams TD, Bigelow DJ, Schoneich C (1999) Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem J 340(Pt 3):657–669

    Article  CAS  PubMed  Google Scholar 

  99. Viner RI, Krainev AG, Williams TD, Schoneich C, Bigelow DJ (1997) Identification of oxidation-sensitive peptides within the cytoplasmic domain of the sarcoplasmic reticulum Ca2+-ATPase. Biochemistry 36:7706–7716

    Article  CAS  PubMed  Google Scholar 

  100. Roderick HL, Bootman MD (2005) Redoxing calcium from the ER. Cell 120:4–5

    Article  CAS  PubMed  Google Scholar 

  101. Berchtold MW, Brinkmeier H, Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265

    CAS  PubMed  Google Scholar 

  102. Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35:411–429

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the Institut National de la Santé et de la Recherche Médicale (Inserm), Association Française contre les Myopathies (AFM), UPMC Université Paris 06, Centre National de la Recherche Scientifique (CNRS), Assistance Publique-Hôpitaux de Paris (AP-HP). We thank Dr. Rachel Peat for English proofing. We apologize to all colleagues who might have not been cited in this review due to space limitation.

Competing interests

None is declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Allamand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castets, P., Lescure, A., Guicheney, P. et al. Selenoprotein N in skeletal muscle: from diseases to function. J Mol Med 90, 1095–1107 (2012). https://doi.org/10.1007/s00109-012-0896-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0896-x

Keywords

Navigation