Skip to main content
Log in

Gaseous messengers in oxygen sensing

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The carotid body is a sensory organ that detects acute changes in arterial blood oxygen (O2) levels and reflexly mediates systemic cardiac, vascular, and respiratory responses to hypoxia. This article provides a brief update of the roles of gas messengers as well as redox homeostasis by hypoxia-inducible factors (HIFs) in hypoxic sensing by the carotid body. Carbon monoxide (CO) and nitric oxide (NO), generated by heme oxygenase-2 (HO-2) and neuronal nitric oxide synthase (nNOS), respectively, inhibit carotid body activity. Molecular O2 is a required substrate for the enzymatic activities of HO-2 and nNOS. Stimulation of carotid body activity by hypoxia may reflect reduced formation of CO and NO. Glomus cells, the site of O2 sensing in the carotid body, express cystathionine γ-lyase (CSE), an H2S generating enzyme. Cth −/− mice, which lack CSE, exhibit severely impaired hypoxia-induced H2S generation, sensory excitation, and stimulation of breathing in response to low O2. Hypoxia-evoked H2S generation in the carotid body requires the interaction of CSE with HO-2, which generates CO. Carotid bodies from Hif1a +/− mice with partial HIF-1α deficiency do not respond to hypoxia, whereas carotid bodies from mice with partial HIF-2α deficiency are hyper-responsive to hypoxia. The opposing roles of HIF-1α and HIF-2α in the carotid body have provided novel insight into molecular mechanisms of redox homeostasis and its role in hypoxia sensing. Heightened carotid body activity has been implicated in the pathogenesis of autonomic morbidities associated with sleep-disordered breathing, congestive heart failure, and essential hypertension. The enzymes that generate gas messengers and redox regulation by HIFs represent potential therapeutic targets for normalizing carotid body function and downstream autonomic output in these disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2:141–219

    Google Scholar 

  2. Prabhakar NR (2000) Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol 88:2287–2295

    PubMed  CAS  Google Scholar 

  3. Prabhakar NR (2006) O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Exp Physiol 91:17–23

    Article  PubMed  CAS  Google Scholar 

  4. Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–2055

    Article  PubMed  CAS  Google Scholar 

  5. Abu-Soud HM, Rousseau DL, Stuehr DJ (1996) Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension. J Biol Chem 271:32515–32518

    Article  PubMed  CAS  Google Scholar 

  6. Migita CT, Matera KM, Ikeda-Saito M, Olson JS, Fujii H, Yoshimura T, Zhou H, Yoshida T (1998) The oxygen and carbon monoxide reactions of heme oxygenase. J Biol Chem 273:945–949

    Article  PubMed  CAS  Google Scholar 

  7. Snyder SH (1992) Nitric oxide: first in a new class of neurotransmitters. Science 257:494–496

    Article  PubMed  CAS  Google Scholar 

  8. Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365:537–547

    Article  PubMed  CAS  Google Scholar 

  9. Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279:36167–36170

    Article  PubMed  CAS  Google Scholar 

  10. Elayan IM, Axley MJ, Prasad PV, Ahlers ST, Auker CR (2000) Effect of hyperbaric oxygen treatment on nitric oxide and oxygen free radicals in rat brain. J Neurophysiol 83:2022–2029

    PubMed  CAS  Google Scholar 

  11. Prabhakar NR, Kumar GK, Chang CH, Agani FH, Haxhiu MA (1993) Nitric oxide in the sensory function of the carotid body. Brain Res 625:16–22

    Article  PubMed  CAS  Google Scholar 

  12. Chugh DK, Katayama M, Mokashi A, Bebout DE, Ray DK, Lahiri S (1994) Nitric oxide-related inhibition of carotid chemosensory nerve activity in the cat. Respir Physiol 97:147–156

    Article  PubMed  CAS  Google Scholar 

  13. Trzebski A, Sato Y, Suzuki A, Sato A (1995) Inhibition of nitric oxide synthesis potentiates the responsiveness of carotid chemoreceptors to systemic hypoxia in the rat. Neurosci Lett 190:29–32

    Article  PubMed  CAS  Google Scholar 

  14. Wang ZZ, Stensaas LJ, Dinger BG, Fidone SJ (1995) Nitric oxide mediates chemoreceptor inhibition in the cat carotid body. Neuroscience 65:217–229

    Article  PubMed  CAS  Google Scholar 

  15. Fidone SJ, Sato A (1970) Efferent inhibition and antidromic depression of chemoreceptor A-fibers from the cat carotid body. Brain Res 22:181–193

    Article  PubMed  CAS  Google Scholar 

  16. Neil E, O'Regan RG (1971) Efferent and afferent impulse activity recorded from few-fibre preparations of otherwise intact sinus and aortic nerves. J Physiol 215:33–47

    PubMed  CAS  Google Scholar 

  17. Neil E, O’Regan RG (1971) The effects of electrical stimulation of the distal end of the cut sinus and aortic nerves on peripheral arterial chemoreceptor activity in the cat. J Physiol 215:15–32

    PubMed  CAS  Google Scholar 

  18. Lahiri S, Smatresk N, Pokorski M, Barnard P, Mokashi A (1983) Efferent inhibition of carotid body chemoreception in chronically hypoxic cats. Am J Physiol 245:R678–R683

    PubMed  CAS  Google Scholar 

  19. Campanucci VA, Nurse CA (2007) Autonomic innervation of the carotid body: role in efferent inhibition. Respir Physiol Neurobiol 157:83–92

    Article  PubMed  CAS  Google Scholar 

  20. Peers C, Wyatt CN, Evans AM (2010) Mechanisms for acute oxygen sensing in the carotid body. Respir Physiol Neurobiol 174:292–298

    Article  PubMed  CAS  Google Scholar 

  21. Schultz HD, Li YL (2007) Carotid body function in heart failure. Respir Physiol Neurobiol 157:171–185

    Article  PubMed  CAS  Google Scholar 

  22. Summers BA, Overholt JL, Prabhakar NR (1999) Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. J Neurophysiol 81:1449–1457

    PubMed  CAS  Google Scholar 

  23. Kline DD, Yang T, Huang PL, Prabhakar NR (1998) Altered respiratory responses to hypoxia in mutant mice deficient in neuronal nitric oxide synthase. J Physiol 511(Pt 1):273–287

    Article  PubMed  CAS  Google Scholar 

  24. Wang ZZ, Stensaas LJ, Bredt DS, Dinger B, Fidone SJ (1994) Localization and actions of nitric oxide in the cat carotid body. Neuroscience 60:275–286

    Article  PubMed  CAS  Google Scholar 

  25. Kline DD, Yang T, Premkumar DR, Thomas AJ, Prabhakar NR (2000) Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase-3. J Appl Physiol 88:1496–1508

    PubMed  CAS  Google Scholar 

  26. Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108:277–293

    Article  PubMed  CAS  Google Scholar 

  27. Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    Article  PubMed  CAS  Google Scholar 

  28. Torrance RW (1996) Carbon monoxide excretion, not oxygen secretion? Adv Exp Med Biol 410:335–339

    Article  PubMed  CAS  Google Scholar 

  29. Lloyd BB, Cunningham DJC, Goode RC (1968) Depression of hypoxic hyperventilation in man by sudden inspiration of carbon monoxide. In: Torrance RW (ed) Arterial Chemoreceptors Oxford, Blackwell, pp 145–150

  30. Sjostrand T (1949) Endogenous formation of carbon monoxide in man. Nature 164:580

    Article  PubMed  CAS  Google Scholar 

  31. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    Article  PubMed  CAS  Google Scholar 

  32. Kutty RK, Maines MD (1981) Purification and characterization of biliverdin reductase from rat liver. J Biol Chem 256:3956–3962

    PubMed  CAS  Google Scholar 

  33. Prabhakar NR (1998) Endogenous carbon monoxide in control of respiration. Respir Physiol 114:57–64

    Article  PubMed  CAS  Google Scholar 

  34. Prabhakar NR, Dinerman JL, Agani FH, Snyder SH (1995) Carbon monoxide: a role in carotid body chemoreception. Proc Natl Acad Sci U S A 92:1994–1997

    Article  PubMed  CAS  Google Scholar 

  35. Overholt JL, Bright GR, Prabhakar NR (1996) Carbon monoxide and carotid body chemoreception. Adv Exp Med Biol 410:341–344

    Article  PubMed  CAS  Google Scholar 

  36. Ortega-Saenz P, Pascual A, Gomez-Diaz R, Lopez-Barneo J (2006) Acute oxygen sensing in heme oxygenase-2 null mice. J Gen Physiol 128:405–411

    Article  PubMed  CAS  Google Scholar 

  37. Donnelly DF (1996) Chemoreceptor nerve excitation may not be proportional to catecholamine secretion. J Appl Physiol 81:657–664

    PubMed  CAS  Google Scholar 

  38. Prabhakar NR (1999) NO and CO as second messengers in oxygen sensing in the carotid body. Respir Physiol 115:161–168

    Article  PubMed  CAS  Google Scholar 

  39. Gadalla MM, Snyder SH (2010) Hydrogen sulfide as a gasotransmitter. J Neurochem 113:14–26

    Article  PubMed  CAS  Google Scholar 

  40. Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A 107:10719–10724

    Article  PubMed  CAS  Google Scholar 

  41. Li Q, Sun B, Wang X, Jin Z, Zhou Y, Dong L, Jiang LH, Rong W (2010) A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxid Redox Signal 12:1179–1189

    Article  PubMed  CAS  Google Scholar 

  42. Fitzgerald RS, Shirahata M, Chang I, Kostuk E, Kiihl S (2011) The impact of hydrogen sulfide (H(2)S) on neurotransmitter release from the cat carotid body. Respir Physiol Neurobiol 176:80–89

    Article  PubMed  CAS  Google Scholar 

  43. Abeles RH, Walsh CT (1973) Acetylenic enzyme inactivators. Inactivation of gamma-cystathionase, in vitro and in vivo, by propargylglycine. J Am Chem Soc 95:6124–6125

    Article  PubMed  CAS  Google Scholar 

  44. Washtien W, Abeles RH (1977) Mechanism of inactivation of gamma-cystathionase by the acetylenic substrate analogue propargylglycine. Biochemistry 16:2485–2491

    Article  PubMed  CAS  Google Scholar 

  45. Olson KR, Healy MJ, Qin Z, Skovgaard N, Vulesevic B, Duff DW, Whitfield NL, Yang G, Wang R, Perry SF (2008) Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. Am J Physiol Regul Integr Comp Physiol 295:R669–R680

    Article  PubMed  CAS  Google Scholar 

  46. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016

    Article  PubMed  CAS  Google Scholar 

  47. Kim D, Kim I, Papreck JR, Donnelly DF, Carroll JL (2011) Characterization of an ATP-sensitive K(+) channel in rat carotid body glomus cells. Respir Physiol Neurobiol 177:247–255

    Article  PubMed  CAS  Google Scholar 

  48. Telezhkin V, Brazier SP, Cayzac SH, Wilkinson WJ, Riccardi D, Kemp PJ (2010) Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels. Respir Physiol Neurobiol 172:169–178

    Article  PubMed  CAS  Google Scholar 

  49. Nurse CA (2010) Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol 95:657–667

    Article  PubMed  CAS  Google Scholar 

  50. Morikawa T, Kajimura M, Nakamura T, Hishiki T, Nakanishi T, Yukutake Y, Nagahata Y, Ishikawa M, Hattori K, Takenouchi T et al (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1119658109

  51. Compernolle V, Brusselmans K, Franco D, Moorman A, Dewerchin M, Collen D, Carmeliet P (2003) Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1alpha. Cardiovasc Res 60:569–579

    Article  PubMed  CAS  Google Scholar 

  52. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149–162

    Article  PubMed  CAS  Google Scholar 

  53. Yoon D, Pastore YD, Divoky V, Liu E, Mlodnicka AE, Rainey K, Ponka P, Semenza GL, Schumacher A, Prchal JT (2006) Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J Biol Chem 281:25703–25711

    Article  PubMed  CAS  Google Scholar 

  54. Bosch-Marce M, Okuyama H, Wesley JB, Sarkar K, Kimura H, Liu YV, Zhang H, Strazza M, Rey S, Savino L et al (2007) Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res 101:1310–1318

    Article  PubMed  CAS  Google Scholar 

  55. Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia–reperfusion injury. Circulation 108:79–85

    Article  PubMed  CAS  Google Scholar 

  56. Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush MA, Semenza GL (2008) Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha. Cardiovasc Res 77:463–470

    Article  PubMed  CAS  Google Scholar 

  57. Feinman R, Deitch EA, Watkins AC, Abungu B, Colorado I, Kannan KB, Sheth SU, Caputo FJ, Lu Q, Ramanathan M et al (2010) HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia–reperfusion injury. Am J Physiol Gastrointest Liver Physiol 299:G833–G843

    Article  PubMed  CAS  Google Scholar 

  58. Kannan KB, Colorado I, Reino D, Palange D, Lu Q, Qin X, Abungu B, Watkins A, Caputo FJ, Xu DZ et al (2011) Hypoxia-inducible factor plays a gut-injurious role in intestinal ischemia reperfusion injury. Am J Physiol Gastrointest Liver Physiol 300:G853–G861

    Article  PubMed  CAS  Google Scholar 

  59. Kline DD, Peng YJ, Manalo DJ, Semenza GL, Prabhakar NR (2002) Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A 99:821–826

    Article  PubMed  CAS  Google Scholar 

  60. Li J, Bosch-Marce M, Nanayakkara A, Savransky V, Fried SK, Semenza GL, Polotsky VY (2006) Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1alpha. Physiol Genomics 25:450–457

    Article  PubMed  CAS  Google Scholar 

  61. Peng YJ, Yuan G, Ramakrishnan D, Sharma SD, Bosch-Marce M, Kumar GK, Semenza GL, Prabhakar NR (2006) Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol 577:705–716

    Article  PubMed  CAS  Google Scholar 

  62. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT et al (1999) Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest 103:691–696

    Article  PubMed  CAS  Google Scholar 

  63. Zhang X, Liu L, Wei X, Tan YS, Tong L, Chang R, Ghanamah MS, Reinblatt M, Marti GP, Harmon JW et al (2010) Impaired angiogenesis and mobilization of circulating angiogenic cells in HIF-1alpha heterozygous-null mice after burn wounding. Wound Repair Regen 18:193–201

    Article  PubMed  CAS  Google Scholar 

  64. Peng YJ, Nanduri J, Khan SA, Yuan G, Wang N, Kinsman B, Vaddi DR, Kumar GK, Garcia JA, Semenza GL et al (2011) Hypoxia-inducible factor 2alpha (HIF-2alpha) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A 108:3065–3070

    Article  PubMed  CAS  Google Scholar 

  65. Yuan G, Khan SA, Luo W, Nanduri J, Semenza GL, Prabhakar NR (2011) Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol 226:2925–2933

    Article  PubMed  CAS  Google Scholar 

  66. Prabhakar NR, Peng YJ (2004) Peripheral chemoreceptors in health and disease. J Appl Physiol 96:359–366

    Article  PubMed  CAS  Google Scholar 

  67. Nanduri J, Wang N, Yuan G, Khan SA, Souvannakitti D, Peng YJ, Kumar GK, Garcia JA, Prabhakar NR (2009) Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci U S A 106:1199–1204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants HL-76537, HL-90554, and HL-86493 (N.R.P) and the Johns Hopkins Institute for Cell Engineering (G.L.S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanduri R. Prabhakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhakar, N.R., Semenza, G.L. Gaseous messengers in oxygen sensing. J Mol Med 90, 265–272 (2012). https://doi.org/10.1007/s00109-012-0876-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0876-1

Keywords

Navigation