Journal of Molecular Medicine

, Volume 89, Issue 6, pp 611–619 | Cite as

The nutraceutical flavonoid luteolin inhibits ADAMTS-4 and ADAMTS-5 aggrecanase activities

  • Angela Moncada-Pazos
  • Alvaro J. Obaya
  • Cristina G. Viloria
  • Carlos López-Otín
  • Santiago Cal
Original Article


A disintegrin and metalloprotease with thrombospondin domains (ADAMTS)-4 (aggrecanase-1) and ADAMTS-5 (aggrecanase-2) are metalloproteases involved in articular cartilage degradation and represent potential therapeutic targets in arthritis treatment. We explore herein the ability of different natural compounds to specifically block the destructive action of these enzymes. Following a preliminary screening using carboxymethylated transferrin as substrate, we focused our interest on luteolin due to its inhibitory effect on ADAMTS-4 and ADAMTS-5 activities using aggrecan and fluorogenic peptides as substrates. However, matrix metalloproteinases (MMPs) activities on these substrates result less affected by this flavonoid. Moreover, incubation of mouse chondrogenic ATDC5 cells in the presence of luteolin clearly decreases the release of aggrecan fragments mediated by aggrecanases under the same conditions in which aggrecanolysis mediated by MMPs is detected. Additionally, glycosaminoglycan levels in culture medium of murine cartilage explants stimulated with interleukin-1-alpha plus retinoic acid are reduced by the presence of the flavonoid. This inhibition takes place through blockade of ADAMTS-mediated aggrecanolysis, while MMPs activity is not or poorly affected. These results suggest that luteolin could be employed as a prototypic modifying disease-agent to create new chondroprotective compounds aimed to specifically block the unwanted aggrecanase activities in arthritic diseases.


Arthritis Biochemistry Inflammation Extracellular matrix 


  1. 1.
    Nagase H, Kashiwagi M (2003) Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5:94–103PubMedCrossRefGoogle Scholar
  2. 2.
    Dean DD, Martel-Pelletier J, Pelletier JP, Howell DS, Woessner JF Jr (1989) Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest 84:678–685PubMedCrossRefGoogle Scholar
  3. 3.
    Arner EC (2002) Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol 2:322–329PubMedCrossRefGoogle Scholar
  4. 4.
    Sandy JD (2006) A contentious issue finds some clarity: on the independent and complementary roles of aggrecanase activity and MMP activity in human joint aggrecanolysis. Osteoarthritis Cartilage 14:95–100PubMedCrossRefGoogle Scholar
  5. 5.
    Fosang AJ, Little CB (2008) Drug insight: aggrecanases as therapeutic targets for osteoarthritis. Nat Clin Pract Rheumatol 4:420–427PubMedCrossRefGoogle Scholar
  6. 6.
    Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA 97:4052–4057PubMedCrossRefGoogle Scholar
  7. 7.
    Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA (2003) Altered fracture repair in the absence of MMP9. Development 130:4123–4133PubMedCrossRefGoogle Scholar
  8. 8.
    Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK et al (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434:648–652PubMedCrossRefGoogle Scholar
  9. 9.
    Colic M, Pavelic K (2000) Molecular mechanisms of anticancer activity of natural dietetic products. J Mol Med 78:333–336PubMedCrossRefGoogle Scholar
  10. 10.
    Vankemmelbeke MN, Jones GC, Fowles C, Ilic MZ, Handley CJ, Day AJ, Knight CG, Mort JS, Buttle DJ (2003) Selective inhibition of ADAMTS-1, -4 and -5 by catechin gallate esters. Eur J Biochem 270:2394–2403PubMedCrossRefGoogle Scholar
  11. 11.
    Imada K, Lin N, Liu C, Lu A, Chen W, Yano M, Sato T, Ito A (2008) Nobiletin, a citrus polymethoxy flavonoid, suppresses gene expression and production of aggrecanases-1 and -2 in collagen-induced arthritic mice. Biochem Biophys Res Commun 373:181–185PubMedCrossRefGoogle Scholar
  12. 12.
    Lopez-Lazaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 9:31–59PubMedCrossRefGoogle Scholar
  13. 13.
    Jang S, Kelley KW, Johnson RW (2008) Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci USA 105:7534–7539PubMedCrossRefGoogle Scholar
  14. 14.
    Xagorari A, Papapetropoulos A, Mauromatis A, Economou M, Fotsis T, Roussos C (2001) Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J Pharmacol Exp Ther 296:181–187PubMedGoogle Scholar
  15. 15.
    Nagase H (1995) Human stromelysins 1 and 2. Meth Enzymol 248:449–470PubMedCrossRefGoogle Scholar
  16. 16.
    Gendron C, Kashiwagi M, Lim NH, Enghild JJ, Thogersen IB, Hughes C, Caterson B, Nagase H (2007) Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J Biol Chem 282:18294–18306PubMedCrossRefGoogle Scholar
  17. 17.
    Otero M, Gomez Reino JJ, Gualillo O (2003) Synergistic induction of nitric oxide synthase type II: in vitro effect of leptin and interferon-gamma in human chondrocytes and ATDC5 chondrogenic cells. Arthritis Rheum 48:404–409PubMedCrossRefGoogle Scholar
  18. 18.
    Arner EC, Pratta MA, Trzaskos JM, Decicco CP, Tortorella MD (1999) Generation and characterization of aggrecanase. A soluble, cartilage-derived aggrecan-degrading activity. J Biol Chem 274:6594–6601PubMedCrossRefGoogle Scholar
  19. 19.
    Majumdar MK, Askew R, Schelling S, Stedman N, Blanchet T, Hopkins B, Morris EA, Glasson SS (2007) Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis Rheum 56:3670–3674PubMedCrossRefGoogle Scholar
  20. 20.
    Barbosa I, Garcia S, Barbier-Chassefiere V, Caruelle JP, Martelly I, Papy-Garcia D (2003) Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13:647–653PubMedCrossRefGoogle Scholar
  21. 21.
    Khanna D, Sethi G, Ahn KS, Pandey MK, Kunnumakkara AB, Sung B, Aggarwal A, Aggarwal BB (2007) Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol 7:344–351PubMedCrossRefGoogle Scholar
  22. 22.
    Sandy JD, Neame PJ, Boynton RE, Flannery CR (1991) Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem 266:8683–8685PubMedGoogle Scholar
  23. 23.
    Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672PubMedCrossRefGoogle Scholar
  24. 24.
    Lopez-Otin C, Palavalli LH, Samuels Y (2009) Protective roles of matrix metalloproteinases: from mouse models to human cancer. Cell Cycle 8:3657–3662PubMedCrossRefGoogle Scholar
  25. 25.
    Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808PubMedCrossRefGoogle Scholar
  26. 26.
    Moncada-Pazos A, Obaya AJ, Fraga MF, Viloria CG, Capella G, Gausachs M, Esteller M, Lopez-Otin C, Cal S (2009) The ADAMTS12 metalloprotease gene is epigenetically silenced in tumor cells and transcriptionally activated in the stroma during progression of colon cancer. J Cell Sci 122:2906–2913PubMedCrossRefGoogle Scholar
  27. 27.
    Viloria CG, Obaya AJ, Moncada-Pazos A, Llamazares M, Astudillo A, Capella G, Cal S, Lopez-Otin C (2009) Genetic inactivation of ADAMTS15 metalloprotease in human colorectal cancer. Cancer Res 69:4926–4934PubMedCrossRefGoogle Scholar
  28. 28.
    Nagase H, Fushimi K (2008) Elucidating the function of non catalytic domains of collagenases and aggrecanases. Connect Tissue Res 49:169–174PubMedCrossRefGoogle Scholar
  29. 29.
    Troeberg L, Fushimi K, Khokha R, Emonard H, Ghosh P, Nagase H (2008) Calcium pentosan polysulfate is a multifaceted exosite inhibitor of aggrecanases. FASEB J 22:3515–3524PubMedCrossRefGoogle Scholar
  30. 30.
    Patwari P, Kurz B, Sandy JD, Grodzinsky AJ (2000) Mannosamine inhibits aggrecanase-mediated changes in the physical properties and biochemical composition of articular cartilage. Arch Biochem Biophys 374:79–85PubMedCrossRefGoogle Scholar
  31. 31.
    Kim JK, Shin EK, Park JH, Kim YH (2010) Antitumor and antimetastatic effects of licochalcone A in mouse models. J Mol Med 88:829–838PubMedCrossRefGoogle Scholar
  32. 32.
    Lauer-Fields JL, Spicer TP, Chase PS, Cudic M, Burstein GD, Nagase H, Hodder P, Fields GB (2008) Screening of potential a disintegrin and metalloproteinase with thrombospondin motifs-4 inhibitors using a collagen model fluorescence resonance energy transfer substrate. Anal Biochem 373:43–51PubMedCrossRefGoogle Scholar
  33. 33.
    Ende C, Gebhardt R (2004) Inhibition of matrix metalloproteinase-2 and -9 activities by selected flavonoids. Planta Med 70:1006–1008PubMedCrossRefGoogle Scholar
  34. 34.
    Hou Y, Wu J, Huang Q, Guo L (2009) Luteolin inhibits proliferation and affects the function of stimulated rat synovial fibroblasts. Cell Biol Int 33:135–147PubMedCrossRefGoogle Scholar
  35. 35.
    Cudic M, Burstein GD, Fields GB, Lauer-Fields J (2009) Analysis of flavonoid-based pharmacophores that inhibit aggrecanases (ADAMTS-4 and ADAMTS-5) and matrix metalloproteinases through the use of topologically constrained peptide substrates. Chem Biol Drug Des 74:473–482PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Angela Moncada-Pazos
    • 1
  • Alvaro J. Obaya
    • 2
  • Cristina G. Viloria
    • 1
  • Carlos López-Otín
    • 1
  • Santiago Cal
    • 1
    • 3
  1. 1.Departamento de Bioquímica y Biología MolecularInstituto Universitario de Oncología ,Universidad de OviedoOviedoSpain
  2. 2.Departamento de Biología FuncionalInstituto Universitario de Oncología, Universidad de OviedoOviedoSpain
  3. 3.Departamento de Bioquímica y Biología MolecularUniversidad de Oviedo. c/ Fernando Bongera s/nOviedoSpain

Personalised recommendations