Skip to main content

Advertisement

Log in

The molecular pathogenesis of HIV-1 associated nephropathy: recent advances

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

HIV-1-associated nephropathy (HIVAN) is a major complication of HIV-1 infection, frequently resulting in kidney failure. HIVAN arises due to HIV-1-induced dysregulation of podocytes, the glomerular epithelial cells that establish and maintain the kidney filtration barrier. Host genetic factors are important for the development of HIVAN. The risk of HIVAN is greatest in populations of African ancestry, and is attributable to a genetic variation at the APOL1 locus on chromosome 22. Mouse models of HIVAN enable delineation of dysregulated pathways underlying disease. Identification of HIVAN susceptibility loci in a mouse model, combined with expression quantitative trait locus mapping, has demonstrated that murine HIVAN loci transregulate podocyte gene expression. HIV-1 induces perturbations in podocyte expression response, suggesting that HIV-1 potentially interferes with compensatory pathways that normally restore cellular homeostasis in the face of genetic mutations. These findings present a framework for identification of podocyte transregulators and reconstruction of the molecular networks connecting susceptibility genes to the development of nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. UNAIDS (2010) Global report. UNAIDS report on the global AIDS epidemic. UNAIDS, Geneva

    Google Scholar 

  2. Rao TK, Filippone EJ, Nicastri AD, Landesman SH, Frank E, Chen CK, Friedman EA (1984) Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. N Engl J Med 310:669–673

    Article  PubMed  CAS  Google Scholar 

  3. Selik RM, Byers RH Jr, Dworkin MS (2002) Trends in diseases reported on U.S. death certificates that mentioned HIV infection, 1987–1999. J Acquir Immune Defic Syndr 29:378–387

    PubMed  Google Scholar 

  4. Estrella MM, Parekh RS, Abraham A, Astor BC, Szczech LA, Anastos K, Dehovitz JA, Merenstein DJ, Pearce CL, Tien PC, Cohen MH, Gange SJ (2010) The impact of kidney function at highly active antiretroviral therapy initiation on mortality in HIV-infected women. J Acquir Immune Defic Syndr 55:217–220

    Article  PubMed  CAS  Google Scholar 

  5. Naicker S, Fabian J (2010) Risk factors for the development of chronic kidney disease with HIV/AIDS. Clin Nephrol 74:51–56

    Google Scholar 

  6. U.S. Renal Data System (2010) USRDS 2010 annual data report: atlas of end-stage renal disease in the United States National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. U.S. Renal Data System, Bethesda

    Google Scholar 

  7. Wyatt CM, Klotman PE (2007) HIV-associated nephropathy in the era of antiretroviral therapy. Am J Med 120:488–492

    Article  PubMed  Google Scholar 

  8. Fabian J, Naicker S (2009) HIV and kidney disease in sub-Saharan Africa. Nat Rev Nephrol 5:591–598

    Article  PubMed  Google Scholar 

  9. Lucas GM, Lau B, Atta MG, Fine DM, Keruly J, Moore RD (2008) Chronic kidney disease incidence, and progression to end-stage renal disease, in HIV-infected individuals: a tale of two races. J Infect Dis 197:1548–1557

    Article  PubMed  Google Scholar 

  10. Reid A, Stohr W, Walker AS, Williams IG, Kityo C, Hughes P, Kambugu A, Gilks CF, Mugyenyi P, Munderi P, Hakim J, Gibb DM (2008) Severe renal dysfunction and risk factors associated with renal impairment in HIV-infected adults in Africa initiating antiretroviral therapy. Clin Infect Dis 46:1271–1281

    Article  PubMed  Google Scholar 

  11. Han TM, Naicker S, Ramdial PK, Assounga AG (2006) A cross-sectional study of HIV-seropositive patients with varying degrees of proteinuria in South Africa. Kidney Int 69:2243–2250

    Article  PubMed  CAS  Google Scholar 

  12. Schwartz EJ, Szczech LA, Ross MJ, Klotman ME, Winston JA, Klotman PE (2005) Highly active antiretroviral therapy and the epidemic of HIV+ end-stage renal disease. J Am Soc Nephrol 16:2412–2420

    Article  PubMed  CAS  Google Scholar 

  13. Shahinian V, Rajaraman S, Borucki M, Grady J, Hollander WM, Ahuja TS (2000) Prevalence of HIV-associated nephropathy in autopsies of HIV-infected patients. Am J Kidney Dis 35:884–888

    Article  PubMed  CAS  Google Scholar 

  14. Bruggeman LA, Ross MD, Tanji N, Cara A, Dikman S, Gordon RE, Burns GC, D’Agati VD, Winston JA, Klotman ME, Klotman PE (2000) Renal epithelium is a previously unrecognized site of HIV-1 infection. J Am Soc Nephrol 11:2079–2087

    PubMed  CAS  Google Scholar 

  15. Marras D, Bruggeman LA, Gao F, Tanji N, Mansukhani MM, Cara A, Ross MD, Gusella GL, Benson G, D’Agati VD, Hahn BH, Klotman ME, Klotman PE (2002) Replication and compartmentalization of HIV-1 in kidney epithelium of patients with HIV-associated nephropathy. Nat Med 8:522–526

    Article  PubMed  CAS  Google Scholar 

  16. Winston JA, Bruggeman LA, Ross MD, Jacobson J, Ross L, D’Agati VD, Klotman PE, Klotman ME (2001) Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. N Engl J Med 344:1979–1984

    Article  PubMed  CAS  Google Scholar 

  17. Bruggeman LA, Nelson PJ (2009) Controversies in the pathogenesis of HIV-associated renal diseases. Nat Rev Nephrol 5:574–581

    Article  PubMed  Google Scholar 

  18. D’Agati V (2003) Pathologic classification of focal segmental glomerulosclerosis. Semin Nephrol 23:117–134

    Article  PubMed  Google Scholar 

  19. Barisoni L, Kriz W, Mundel P, D’Agati V (1999) The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10:51–61

    PubMed  CAS  Google Scholar 

  20. Gharavi AG, Ahmad T, Wong RD, Hooshyar R, Vaughn J, Oller S, Frankel RZ, Bruggeman LA, D’Agati VD, Klotman PE, Lifton RP (2004) Mapping a locus for susceptibility to HIV-1-associated nephropathy to mouse chromosome 3. Proc Natl Acad Sci USA 101:2488–2493

    Article  PubMed  CAS  Google Scholar 

  21. Husain M, D’Agati VD, He JC, Klotman ME, Klotman PE (2005) HIV-1 Nef induces dedifferentiation of podocytes in vivo: a characteristic feature of HIVAN. AIDS 19:1975–1980

    Article  PubMed  CAS  Google Scholar 

  22. Lu TC, He JC, Wang ZH, Feng X, Fukumi-Tominaga T, Chen N, Xu J, Iyengar R, Klotman PE (2008) HIV-1 nef disrupts the podocyte actin cytoskeleton by interacting with diaphanous interacting protein. J Biol Chem 283:8173–8182

    Article  PubMed  CAS  Google Scholar 

  23. Lu TC, He JC, Klotman PE (2007) Podocytes in HIV-associated nephropathy. Nephron Clin Pract 106:c67–c71

    Article  PubMed  CAS  Google Scholar 

  24. He JC, Husain M, Sunamoto M, D’Agati VD, Klotman ME, Iyengar R, Klotman PE (2004) Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1, 2 pathways. J Clin Invest 114:643–651

    PubMed  CAS  Google Scholar 

  25. Sunamoto M, Husain M, He JC, Schwartz EJ, Klotman PE (2003) Critical role for Nef in HIV-1-induced podocyte dedifferentiation. Kidney Int 64:1695–1701

    Article  PubMed  CAS  Google Scholar 

  26. Tandon R, Levental I, Huang C, Byfield FJ, Ziembicki J, Schelling JR, Bruggeman LA, Sedor JR, Janmey PA, Miller RT (2007) HIV infection changes glomerular podocyte cytoskeletal composition and results in distinct cellular mechanical properties. Am J Physiol Ren Physiol 292:F701–F710

    Article  CAS  Google Scholar 

  27. Martinka S, Bruggeman LA (2006) Persistent NF-kappaB activation in renal epithelial cells in a mouse model of HIV-associated nephropathy. Am J Physiol Ren Physiol 290:F657–F665

    Article  CAS  Google Scholar 

  28. Ross MJ, Martinka S, D’Agati VD, Bruggeman LA (2005) NF-kappaB regulates Fas-mediated apoptosis in HIV-associated nephropathy. J Am Soc Nephrol 16:2403–2411

    Article  PubMed  CAS  Google Scholar 

  29. Albaqumi M, Soos TJ, Barisoni L, Nelson PJ (2006) Collapsing glomerulopathy. J Am Soc Nephrol 17:2854–2863

    Article  PubMed  CAS  Google Scholar 

  30. Yadav A, Vallabu S, Kumar D, Ding G, Charney DN, Chander PN, Singhal PC (2010) HIVAN phenotype: consequence of epithelial mesenchymal transdifferentiation. Am J Physiol Ren Physiol 298:F734–F744

    Article  CAS  Google Scholar 

  31. Nelson PJ, D’Agati VD, Gries JM, Suarez JR, Gelman IH (2003) Amelioration of nephropathy in mice expressing HIV-1 genes by the cyclin-dependent kinase inhibitor flavopiridol. J Antibiot Ther 51:921–929

    CAS  Google Scholar 

  32. Nelson PJ, Gelman IH, Klotman PE (2001) Suppression of HIV-1 expression by inhibitors of cyclin-dependent kinases promotes differentiation of infected podocytes. J Am Soc Nephrol 12:2827–2831

    PubMed  CAS  Google Scholar 

  33. Peters PJ, Moore DM, Mermin J, Brooks JT, Downing R, Were W, Kigozi A, Buchacz K, Weidle PJ (2008) Antiretroviral therapy improves renal function among HIV-infected Ugandans. Kidney Int 74:925–929

    Article  PubMed  CAS  Google Scholar 

  34. Lucas GM, Clarke W, Kagaayi J, Atta MG, Fine DM, Laeyendecker O, Serwadda D, Chen M, Wawer MJ, Gray RH (2010) Decreased kidney function in a community-based cohort of HIV-Infected and HIV-negative individuals in Rakai, Uganda. J Acquir Immune Defic Syndr 55:491–494

    Article  PubMed  Google Scholar 

  35. Wyatt CM, Morgello S, Katz-Malamed R, Wei C, Klotman ME, Klotman PE, D’Agati VD (2009) The spectrum of kidney disease in patients with AIDS in the era of antiretroviral therapy. Kidney Int 75:428–434

    Article  PubMed  CAS  Google Scholar 

  36. Kalayjian RC, Landay A, Pollard RB, Taub DD, Gross BH, Francis IR, Sevin A, Pu M, Spritzler J, Chernoff M, Namkung A, Fox L, Martinez A, Waterman K, Fiscus SA, Sha B, Johnson D, Slater S, Rousseau F, Lederman MM (2003) Age-related immune dysfunction in health and in human immunodeficiency virus (HIV) disease: association of age and HIV infection with naive CD8+ cell depletion, reduced expression of CD28 on CD8+ cells, and reduced thymic volumes. J Infect Dis 187:1924–1933

    Article  PubMed  Google Scholar 

  37. Choi AI, Shlipak MG, Hunt PW, Martin JN, Deeks SG (2009) HIV-infected persons continue to lose kidney function despite successful antiretroviral therapy. AIDS 23:2143–2149

    Article  PubMed  Google Scholar 

  38. Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA, Goedert JJ, O’Brien TR, Jacobson LP, Kaslow R, Buchbinder S, Vittinghoff E, Vlahov D, Hoots K, Hilgartner MW, O’Brien SJ (1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 277:959–965

    Article  PubMed  CAS  Google Scholar 

  39. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, Murthy KK, Rovin BH, Bradley W, Clark RA, Anderson SA, O’Connell RJ, Agan BK, Ahuja SS, Bologna R, Sen L, Dolan MJ, Ahuja SK (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307:1434–1440

    Article  PubMed  CAS  Google Scholar 

  40. Freedman BI, Soucie JM, Stone SM, Pegram S (1999) Familial clustering of end-stage renal disease in blacks with HIV-associated nephropathy. Am J Kidney Dis 34:254–258

    Article  PubMed  CAS  Google Scholar 

  41. Stephens JC, Briscoe D, O’Brien SJ (1994) Mapping by admixture linkage disequilibrium in human populations: limits and guidelines. Am J Hum Genet 55:809–824

    PubMed  CAS  Google Scholar 

  42. Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, Coresh J, Patterson N, Tandon A, Powe NR, Fink NE, Sadler JH, Weir MR, Abboud HE, Adler SG, Divers J, Iyengar SK, Freedman BI, Kimmel PL, Knowler WC, Kohn OF, Kramp K, Leehey DJ, Nicholas SB, Pahl MV, Schelling JR, Sedor JR, Thornley-Brown D, Winkler CA, Smith MW, Parekh RS (2008) MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet 40:1185–1192

    Article  PubMed  CAS  Google Scholar 

  43. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, Oleksyk T, McKenzie LM, Kajiyama H, Ahuja TS, Berns JS, Briggs W, Cho ME, Dart RA, Kimmel PL, Korbet SM, Michel DM, Mokrzycki MH, Schelling JR, Simon E, Trachtman H, Vlahov D, Winkler CA (2008) MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 40:1175–1184

    Article  PubMed  CAS  Google Scholar 

  44. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL, Bernhardy AJ, Hicks PJ, Nelson GW, Vanhollebeke B, Winkler CA, Kopp JB, Pays E, Pollak MR (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–845

    Article  PubMed  CAS  Google Scholar 

  45. Genovese G, Tonna SJ, Knob AU, Appel GB, Katz A, Bernhardy AJ, Needham AW, Lazarus R, Pollak MR (2010) A risk allele for focal segmental glomerulosclerosis in African Americans is located within a region containing APOL1 and MYH9. Kidney Int 78:698–704

    Article  PubMed  Google Scholar 

  46. Dickie P, Felser J, Eckhaus M, Bryant J, Silver J, Marinos N, Notkins AL (1991) HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology 185:109–119

    Article  PubMed  CAS  Google Scholar 

  47. Kopp JB, Klotman ME, Adler SH, Bruggeman LA, Dickie P, Marinos NJ, Eckhaus M, Bryant JL, Notkins AL, Klotman PE (1992) Progressive glomerulosclerosis and enhanced renal accumulation of basement membrane components in mice transgenic for human immunodeficiency virus type 1 genes. Proc Natl Acad Sci USA 89:1577–1581

    Article  PubMed  CAS  Google Scholar 

  48. Bruggeman LA, Dikman S, Meng C, Quaggin SE, Coffman TM, Klotman PE (1997) Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J Clin Invest 100:84–92

    Article  PubMed  CAS  Google Scholar 

  49. Paragas N, Nickolas T, Wyatt C, Forster C, Sise M, Morgello S, Jagla B, Stella P, Carnevali M, Mattei S, Bovino A, Argentiero L, Magnano A, Allegri L, Devarajan P, Klotman P, D’Agati V, Gharavi A, Barasch J (2009) Urinary NGAL marks tubular disease in HIVAN. J Am Soc Nephrol 20:1687–1692

    Article  PubMed  CAS  Google Scholar 

  50. Zhong J, Zuo Y, Ma J, Fogo AB, Jolicoeur P, Ichikawa I, Matsusaka T (2005) Expression of HIV-1 genes in podocytes alone can lead to the full spectrum of HIV-1-associated nephropathy. Kidney Int 68:1048–1060

    Article  PubMed  CAS  Google Scholar 

  51. Papeta N, Chan KT, Prakash S, Martino J, Kiryluk K, Ballard D, Bruggeman LA, Frankel R, Zheng Z, Klotman PE, Zhao H, D’Agati VD, Lifton RP, Gharavi AG (2009) Susceptibility loci for murine HIV-associated nephropathy encode trans-regulators of podocyte gene expression. J Clin Invest 119:1178–1188

    Article  PubMed  CAS  Google Scholar 

  52. Chan KT, Papeta N, Martino J, Zheng Z, Frankel RZ, Klotman PE, D’Agati VD, Lifton RP, Gharavi AG (2009) Accelerated development of collapsing glomerulopathy in mice congenic for the HIVAN1 locus. Kidney Int 75:366–372

    Article  PubMed  CAS  Google Scholar 

  53. Chua S Jr, Li Y, Liu SM, Liu R, Chan KT, Martino J, Zheng Z, Susztak K, D’Agati VD, Gharavi AG (2010) A susceptibility gene for kidney disease in an obese mouse model of type II diabetes maps to chromosome 8. Kidney Int 78:453–462

    Article  PubMed  CAS  Google Scholar 

  54. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755

    Article  PubMed  CAS  Google Scholar 

  55. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  PubMed  CAS  Google Scholar 

  56. Rockman MV, Kruglyak L (2006) Genetics of global gene expression. Nat rev 7:862–872

    Article  CAS  Google Scholar 

  57. Behmoaras J, Bhangal G, Smith J, McDonald K, Mutch B, Lai PC, Domin J, Game L, Salama A, Foxwell BM, Pusey CD, Cook HT, Aitman TJ (2008) Jund is a determinant of macrophage activation and is associated with glomerulonephritis susceptibility. Nat Genet 40:553–559

    Article  PubMed  CAS  Google Scholar 

  58. Petretto E, Sarwar R, Grieve I, Lu H, Kumaran MK, Muckett PJ, Mangion J, Schroen B, Benson M, Punjabi PP, Prasad SK, Pennell DJ, Kiesewetter C, Tasheva ES, Corpuz LM, Webb MD, Conrad GW, Kurtz TW, Kren V, Fischer J, Hubner N, Pinto YM, Pravenec M, Aitman TJ, Cook SA (2008) Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat Genet 40:546–552

    Article  PubMed  CAS  Google Scholar 

  59. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, Lum PY, Leonardson A, Thieringer R, Metzger JM, Yang L, Castle J, Zhu H, Kash SF, Drake TA, Sachs A, Lusis AJ (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717

    Article  PubMed  CAS  Google Scholar 

  60. Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Muller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–253

    Article  PubMed  CAS  Google Scholar 

  61. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, Leonardson A, Castellini LW, Wang S, Champy MF, Zhang B, Emilsson V, Doss S, Ghazalpour A, Horvath S, Drake TA, Lusis AJ, Schadt EE (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–435

    Article  PubMed  CAS  Google Scholar 

  62. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB, Gunnarsdottir S, Mouy M, Steinthorsdottir V, Eiriksdottir GH, Bjornsdottir G, Reynisdottir I, Gudbjartsson D, Helgadottir A, Jonasdottir A, Jonasdottir A, Styrkarsdottir U, Gretarsdottir S, Magnusson KP, Stefansson H, Fossdal R, Kristjansson K, Gislason HG, Stefansson T, Leifsson BG, Thorsteinsdottir U, Lamb JR, Gulcher JR, Reitman ML, Kong A, Schadt EE, Stefansson K (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428

    Article  PubMed  CAS  Google Scholar 

  63. Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ, Horvath S (2006) Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2:e130

    Article  PubMed  Google Scholar 

  64. Huber TB, Kwoh C, Wu H, Asanuma K, Godel M, Hartleben B, Blumer KJ, Miner JH, Mundel P, Shaw AS (2006) Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin. J Clin Invest 116:1337–1345

    Article  PubMed  CAS  Google Scholar 

  65. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37:382–390

    Article  PubMed  CAS  Google Scholar 

  66. Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM, Rollmann SM, Duncan LH, Lawrence F, Anholt RR, Mackay TF (2009) Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 41:299–307

    Article  PubMed  CAS  Google Scholar 

  67. Tanay A, Sharan R, Kupiec M, Shamir R (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci USA 101:2981–2986

    Article  PubMed  CAS  Google Scholar 

  68. Bergholdt R, Storling ZM, Lage K, Karlberg EO, Olason PI, Aalund M, Nerup J, Brunak S, Workman CT, Pociot F (2007) Integrative analysis for finding genes and networks involved in diabetes and other complex diseases. Genome Biol 8:R253

    Article  PubMed  Google Scholar 

  69. Bergholdt R, Brorsson C, Lage K, Nielsen JH, Brunak S, Pociot F (2009) Expression profiling of human genetic and protein interaction networks in type 1 diabetes. PLoS ONE 4:e6250

    Article  PubMed  Google Scholar 

Download references

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali G. Gharavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papeta, N., Sterken, R., Kiryluk, K. et al. The molecular pathogenesis of HIV-1 associated nephropathy: recent advances. J Mol Med 89, 429–436 (2011). https://doi.org/10.1007/s00109-010-0719-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0719-x

Keywords

Navigation