Skip to main content

Advertisement

Log in

hSMG-1 is a granzyme B-associated stress-responsive protein kinase

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Granzyme B plays a key role in cell-mediated programmed cell death. We previously demonstrated that p53 is a functional determinant in the granzyme B-induced cytotoxic T-lymphocyte response. However, the pathways leading to activation of p53 by granzyme B remain incompletely understood. We now demonstrate that granzyme B-induced DNA damage signaling as revealed by histone H2AX phosphorylation and subsequent activation of the stress kinase CHK2. Confocal microscopy analysis indicates that granzyme B treatment of tumor cells induced an early translocation of endonuclease caspase-activated DNase. DNA microarray-based global transcriptional profiling and RT-PCR indeed revealed genes related to DNA damage. Among these genes, hSMG-1, a genotoxic stress-activated protein, was constantly upregulated in tumor cells following granzyme B treatment. Knockdown of the hSMG-1 gene in T1 tumor target cell line resulted in a significant inhibition of granzyme B- and CTL-induced killing. Our data suggest that granzyme B may exert cell death through DNA damage signaling and uncover a novel molecular link between the DNA damage pathway and granzyme B-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATM:

Ataxia-telangiectasia mutated

CHK2:

Checkpoint kinase 2

CTL:

Cytotoxic T lymphocyte

DSBs:

Double-strand breaks

GrB:

Granzyme B

H2AX:

Histone 2AX

ICAD:

Inhibitor of CAD

PIKK:

Phosphatidylinositol 3-kinase-related kinases

SLO:

Streptolysin-O

hSMG-1:

Human suppressor of morphogenesis in genitalia-1

TNF:

Tumor necrosis factor

TRAIL:

TNF-related apoptosis

References

  1. Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3:361–370. doi:10.1038/nri1083nri1083

    Article  PubMed  CAS  Google Scholar 

  2. Chowdhury D, Lieberman J (2008) Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol 26:389–420. doi:10.1146/annurev.immunol.26.021607.090404

    Article  PubMed  CAS  Google Scholar 

  3. Adrain C, Murphy BM, Martin SJ (2005) Molecular ordering of the caspase activation cascade initiated by the cytotoxic T lymphocyte/natural killer (CTL/NK) protease granzyme B. J Biol Chem 280:4663–4673. doi:M410915200

    Article  PubMed  CAS  Google Scholar 

  4. Waterhouse NJ, Sedelies KA, Trapani JA (2006) Role of Bid-induced mitochondrial outer membrane permeabilization in granzyme B-induced apoptosis. Immunol Cell Biol 84:72–78. doi:ICB

    Article  PubMed  CAS  Google Scholar 

  5. Adrain C, Duriez PJ, Brumatti G, Delivani P, Martin SJ (2006) The cytotoxic lymphocyte protease, granzyme B, targets the cytoskeleton and perturbs microtubule polymerization dynamics. J Biol Chem 281:8118–8125. doi:M509361200

    Article  PubMed  CAS  Google Scholar 

  6. Andrade F, Roy S, Nicholson D, Thornberry N, Rosen A, Casciola-Rosen L (1998) Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity 8:451–460. doi:S1074-7613(00)80550-6

    Article  PubMed  CAS  Google Scholar 

  7. Culmsee C, Mattson MP (2005) p53 in neuronal apoptosis. Biochem Biophys Res Commun 331:761–777. doi:S0006-291X(05)00655-8

    Article  PubMed  CAS  Google Scholar 

  8. Bouvard V, Zaitchouk T, Vacher M, Duthu A, Canivet M, Choisy-Rossi C, Nieruchalski M, May E (2000) Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. Oncogene 19:649–660. doi:10.1038/sj.onc.1203366

    Article  PubMed  CAS  Google Scholar 

  9. Li YZ, Lu DY, Tan WQ, Wang JX, Li PF (2008) p53 initiates apoptosis by transcriptionally targeting the antiapoptotic protein ARC. Mol Cell Biol 28:564–574. doi:MCB.00738-07

    Article  PubMed  CAS  Google Scholar 

  10. Liu X, Yue P, Khuri FR, Sun SY (2004) p53 upregulates death receptor 4 expression through an intronic p53 binding site. Cancer Res 64:5078–5083. doi:10.1158/0008-5472.CAN-04-119564/15/5078

    Article  PubMed  CAS  Google Scholar 

  11. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171. doi:S0955067403000036

    Article  PubMed  CAS  Google Scholar 

  12. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694. doi:S1097-2765(01)00214-3

    Article  PubMed  CAS  Google Scholar 

  13. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870. doi:nature03482

    Article  PubMed  CAS  Google Scholar 

  14. Hakem R (2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27:589–605. doi:emboj200815

    Article  PubMed  CAS  Google Scholar 

  15. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168. doi:10.1038/nrc1011nrc1011

    Article  PubMed  CAS  Google Scholar 

  16. Xu Y (2006) DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nat Rev Immunol 6:261–270. doi:nri1804

    Article  PubMed  CAS  Google Scholar 

  17. Al Rashid ST, Dellaire G, Cuddihy A, Jalali F, Vaid M, Coackley C, Folkard M, Xu Y, Chen BP, Chen DJ, Lilge L, Prise KM, Bazett Jones DP, Bristow RG (2005) Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo. Cancer Res 65:10810–10821. doi:65/23/10810

    Article  PubMed  CAS  Google Scholar 

  18. Kang J, Ferguson D, Song H, Bassing C, Eckersdorff M, Alt FW, Xu Y (2005) Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. Mol Cell Biol 25:661–670. doi:25/2/661

    Article  PubMed  CAS  Google Scholar 

  19. Zhao H, Traganos F, Darzynkiewicz Z (2008) Phosphorylation of p53 on Ser15 during cell cycle caused by Topo I and Topo II inhibitors in relation to ATM and Chk2 activation. Cell Cycle 7:3048–3055. doi:6750

    Article  PubMed  CAS  Google Scholar 

  20. Brumbaugh KM, Otterness DM, Geisen C, Oliveira V, Brognard J, Li X, Lejeune F, Tibbetts RS, Maquat LE, Abraham RT (2004) The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol Cell 14:585–598. doi:10.1016/j.molcel.2004.05.005S1097276504002722

    Article  PubMed  CAS  Google Scholar 

  21. Gehen SC, Staversky RJ, Bambara RA, Keng PC, O'Reilly MA (2008) hSMG-1 and ATM sequentially and independently regulate the G1 checkpoint during oxidative stress. Oncogene 27:4065–4074. doi:onc200848

    Article  PubMed  CAS  Google Scholar 

  22. Aylon Y, Oren M (2007) Living with p53, dying of p53. Cell 130:597–600. doi:S0092-8674(07)01027-6

    Article  PubMed  CAS  Google Scholar 

  23. Das S, Boswell SA, Aaronson SA, Lee SW (2008) P53 promoter selection: choosing between life and death. Cell Cycle 7:154–157. doi:5236

    Article  PubMed  CAS  Google Scholar 

  24. Meslin F, Thiery J, Richon C, Jalil A, Chouaib S (2007) Granzyme B-induced cell death involves induction of p53 tumor suppressor gene and its activation in tumor target cells. J Biol Chem 282:32991–32999. doi:M705290200

    Article  PubMed  CAS  Google Scholar 

  25. Le Floc'h A, Jalil A, Vergnon I, Le Maux CB, Lazar V, Bismuth G, Chouaib S, Mami-Chouaib F (2007) Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J Exp Med 204:559–570

    Article  PubMed  Google Scholar 

  26. Abouzahr S, Bismuth G, Gaudin C, Caroll O, Van Endert P, Jalil A, Dausset J, Vergnon I, Richon C, Kauffmann A, Galon J, Raposo G, Mami-Chouaib F, Chouaib S (2006) Identification of target actin content and polymerization status as a mechanism of tumor resistance after cytolytic T lymphocyte pressure. Proc Natl Acad Sci USA 103:1428–1433. doi:0510454103

    Article  PubMed  CAS  Google Scholar 

  27. Thomas DA, Du C, Xu M, Wang X, Ley TJ (2000) DFF45/ICAD can be directly processed by granzyme B during the induction of apoptosis. Immunity 12:621–632

    Article  PubMed  CAS  Google Scholar 

  28. Ohnishi T, Yamashita A, Kashima I, Schell T, Anders KR, Grimson A, Hachiya T, Hentze MW, Anderson P, Ohno S (2003) Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol Cell 12:1187–1200. doi:S109727650300443X

    Article  PubMed  CAS  Google Scholar 

  29. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093. doi:btp101

    Article  PubMed  CAS  Google Scholar 

  30. Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R (1999) Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 190:1033–1038

    Article  PubMed  CAS  Google Scholar 

  31. Lu X (2005) p53: a heavily dictated dictator of life and death. Curr Opin Genet Dev 15:27–33

    Article  PubMed  CAS  Google Scholar 

  32. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221. doi:10.1038/356215a0

    Article  PubMed  CAS  Google Scholar 

  33. Thiery J, Abouzahr S, Dorothee G, Jalil A, Richon C, Vergnon I, Mami-Chouaib F, Chouaib S (2005) p53 potentiation of tumor cell susceptibility to CTL involves Fas and mitochondrial pathways. J Immunol 174:871–878. doi:174/2/871

    PubMed  CAS  Google Scholar 

  34. Thiery J, Dorothee G, Haddada H, Echchakir H, Richon C, Stancou R, Vergnon I, Benard J, Mami-Chouaib F, Chouaib S (2003) Potentiation of a tumor cell susceptibility to autologous CTL killing by restoration of wild-type p53 function. J Immunol 170:5919–5926

    PubMed  CAS  Google Scholar 

  35. Hua G, Wang S, Zhong C, Xue P, Fan Z (2009) Ignition of p53 bomb sensitizes tumor cells to granzyme K-mediated cytolysis. J Immunol 182:2152–2159. doi:182/4/2152

    Article  PubMed  CAS  Google Scholar 

  36. Widlak P (2000) The DFF40/CAD endonuclease and its role in apoptosis. Acta Biochim Pol 47:1037–1044

    PubMed  CAS  Google Scholar 

  37. Oliveira V, Romanow WJ, Geisen C, Otterness DM, Mercurio F, Wang HG, Dalton WS, Abraham RT (2008) A protective role for the human SMG-1 kinase against tumor necrosis factor-alpha-induced apoptosis. J Biol Chem 283:13174–13184. doi:M708008200

    Article  PubMed  CAS  Google Scholar 

  38. Abraham RT (2004) PI 3-kinase related kinases: 'big' players in stress-induced signaling pathways. DNA Repair 3:883–887. doi:10.1016/j.dnarep.2004.04.002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Florence Faure for T1 cells and Lisa Bain for editing the manuscript. This work was supported by grants from the INSERM, the “Association pour la Recherche contre le Cancer” (ARC, grant 3922) and the “Ligue contre le Cancer” (SR2005-430, comité des Hauts de Seine), and the “Agence Nationale de la Recherche”.

Data availability

The microarray data related to this paper have been submitted to the Array Express data repository at the European Bioinformatics Institute (http://www.ebi.ac.uk/arrayexpress/) under the accession number XXX.

Authorships

Meslin F., Hamaï A., Rosselli F., Wemhoff G., Thiery J., and Chouaib S. designed and performed the research project, analyzed data, and wrote the manuscript; Richon C. performed technical assistance for the DNA microarray assay; Jalil A. performed confocal microscopy analysis; Mlecnik B. and Galon J. contributed to the DNA microarray analysis.

Disclosures

The authors declare no financial conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem Chouaib.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2710 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meslin, F., Hamaï, A., Mlecnik, B. et al. hSMG-1 is a granzyme B-associated stress-responsive protein kinase. J Mol Med 89, 411–421 (2011). https://doi.org/10.1007/s00109-010-0708-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0708-0

Keywords

Navigation