Skip to main content

Advertisement

Log in

A novel melanoma-targeting peptide screened by phage display exhibits antitumor activity

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Peptide display on the phage surface has been widely used to identify specific peptides targeting several in vivo and in vitro tumor cells and the tumor vasculature, playing a role in the discovery of bioactive antitumor agents. Bioactive peptides have been selected to target important tumor receptors or apoptosis-associated molecules such as p53. Presently, we attempted to identify potentially antitumor bioactive molecules using the whole cell surface as the recognizable static matrix. Such methodology could be advantageous in cancer therapy because it does not require previous characterization of target molecules. Using a C7C phage display library, we screened for peptides binding to the B16F10-Nex2 melanoma cell surface after pre-absorption on melan-A lineage. After a few rounds of enrichment, 50 phages were randomly selected, amplified, and tested for inhibition of tumor cell proliferation. Seven were active, and the corresponding peptide of each phage was chemically synthesized in the cyclic form and tested in vitro. Three peptides were able to preferentially inhibit the melanoma lineage. A unique peptide, [-CSSRTMHHC-], exhibited in vivo antitumor inhibitory activity against a subcutaneous melanoma challenge, rendering 60% of mice without tumor growth. Further, this peptide also markedly inhibited in vitro and in vivo the tumor cell invasion and cell-to-cell adhesiveness in vitro. This is the first report on a bioactive peptide derived from a C7C library active against whole melanoma cells in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Miller AJ, Mihm MC (2006) Mechanisms of disease—melanoma. N Engl J Med 355:51–65

    Article  CAS  PubMed  Google Scholar 

  2. Ruoslahti E (2002) Drug targeting to specific vascular sites. Drug Discov Today 7:1138–1143

    Article  CAS  PubMed  Google Scholar 

  3. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  CAS  PubMed  Google Scholar 

  4. Shadidi M, Sioud M (2002) Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. Faseb J 16:256–258

    Google Scholar 

  5. Zhang BH, Zhang YQ, Wang JW, Zhang YD, Chen JJ, Pan YF, Ren LF, Hu ZY, Zhao JF, Liao MM, Wang SW (2007) Screening and identification of a targeting peptide to hepatocarcinoma from a phage display peptide library. Mol Med 13:246–254

    CAS  PubMed  Google Scholar 

  6. Kolonin MG, Bover L, Sun J, Zurita AJ, Do KA, Lahdenranta J, Cardo-Vila M, Giordano RJ, Jaalouk DE, Ozawa MG, Moya CA, Souza GR, Staquicini FI, Kunyiasu A, Scudiero DA, Holbeck SL, Sausville EA, Arap W, Pasqualini R (2006) Ligand-directed surface profiling of human cancer cells with combinatorial peptide libraries. Cancer Res 66:34–40

    Article  CAS  PubMed  Google Scholar 

  7. Li ZH, Zhao RJ, Wu XH, Sun Y, Yao M, Li JJ, Xu YH, Gu JR (2005) Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. Faseb J 19:1978–1985

    Article  CAS  PubMed  Google Scholar 

  8. Hu SJ, Guo XN, Xie HH, Du YL, Pan YL, Shi YQ, Wang J, Hong L, Han S, Zhang DT, Huang DW, Zhang KD, Bai FH, Jiang HP, Zhai HH, Nie YZ, Wu KC, Fan DM (2006) Phage display selection of peptides that inhibit metastasis ability of gastric cancer cells with high liver-metastatic potential. Biochem Biophys Res Commun 341:964–972

    Article  CAS  PubMed  Google Scholar 

  9. Pasqualini R, Arap W (2002) Translation of vascular diversity into targeted therapeutics. Ann Hematol 81:S66–S67

    PubMed  Google Scholar 

  10. Zhang JB, Spring H, Schwab M (2001) Neuroblastoma tumor cell-binding peptides identified through random peptide phage display. Cancer Lett 171:153–164

    Article  CAS  PubMed  Google Scholar 

  11. Hong FD, Clayman GL (2000) Isolation of a peptide for targeted drug delivery into human head and neck solid tumors. Cancer Res 60:6551–6556

    CAS  PubMed  Google Scholar 

  12. Kay BK, Kurakin AV, Hyde-DeRuyscher R (1998) From peptides to drugs via phage display. Drug Discov Today 3:370–378

    Article  CAS  Google Scholar 

  13. Lee JH, Engler JA, Collawn JF, Moore BA (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 268:2004–2012

    Article  CAS  PubMed  Google Scholar 

  14. Ladner RC, Sato AK, Gorzelany J, de Souza M (2004) Phage display-derived peptides as a therapeutic alternatives to antibodies. Drug Discov Today 9:525–529

    Article  CAS  PubMed  Google Scholar 

  15. Eriksson F, Culp WD, Massey R, Egevad L, Garland D, Persson MAA, Pisa P (2007) Tumor specific phage particles promote tumor regression in a mouse melanoma model. Cancer Immunol Immunother 56:677–687

    Article  PubMed  Google Scholar 

  16. Howell RC, Revskaya E, Pazo V, Nosanchuk JD, Casadevall A, Dadachova E (2007) Phage display library derived peptides that bind to human tumor melanin as potential vehicles for targeted radionuclide therapy of metastatic melanoma. Bioconjug Chem 18:1739–1748

    Article  CAS  PubMed  Google Scholar 

  17. Wu J, Wu MC, Zhang LF, Lei JY, Feng L, Jin J (2009) Identification of binding peptides of the ADAM15 disintegrin domain using phage display. J Biosci 34:213–220

    Article  CAS  PubMed  Google Scholar 

  18. Paschoalin T, Carmona AK, Rodrigues EG, Oliveira V, Monteiro HP, Juliano MA, Juliano L, Travassos LR (2007) Characterization of thimet oligopeptidase and neurolysin activities in B16F10-Nex2 tumor cells and their involvement in angiogenesis and tumor growth. Mol Cancer 6:44–58

    Article  PubMed  Google Scholar 

  19. Hirata IY, Cezari MHS, Nakaie C (1994) Internally quenched fluorogenic peptide substrates: solid phase, synthesis and fluorescence spectroscopy of peptides containing orthoaminobenzoil/dinitrophenyl groups as donor acceptor-pairs. Lett Peptide Sci 1:299–308

    Article  Google Scholar 

  20. Dobroff AS, Rodrigues EG, Moraes JZ, Travassos LR (2002) Protective, anti-tumor monoclonal antibody recognizes a conformational epitope similar to melibiose at the surface of invasive murine melanoma cells. Hybrid Hybridomics 21:321–331

    Article  CAS  PubMed  Google Scholar 

  21. Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366

    Article  CAS  PubMed  Google Scholar 

  22. Kennel SJ, Mirzadeh S, Hurst GB, Foote LJ, Lankford TK, Glowienka KA, Chappell LL, Kelso JR, Davern SM, Safavy A, Brechbiel MW (2000) Labeling and distribution of linear peptides identified using in vivo phage display selection for tumors. Nucl Med Biol 27:815–825

    Article  CAS  PubMed  Google Scholar 

  23. Oliveira V, Campos M, Hemerly JP, Ferro ES, Camargo ACM, Juliano MA, Juliano L (2001) Selective neurotensin-derived internally quenched fluorogenic substrates for neurolysin (EC 3.4.24.16): comparison with thimet oligopeptidase (EC 3.4.24.15) and neprilysin (EC 3.4.24.11). Anal Biochem 292:257–265

    Article  CAS  PubMed  Google Scholar 

  24. Guimaraes-Ferreira CA, Rodrigues EG, Mortaray RA, Cabralz H, Serrano FA, Ribeiro-dos-Santos R, Travassos LR (2007) Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa. Neoplasia 9:723–733

    Article  CAS  PubMed  Google Scholar 

  25. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319

    Article  CAS  PubMed  Google Scholar 

  26. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249:386–390

    Article  CAS  PubMed  Google Scholar 

  27. Sioud M, Forre O, Dybwad A (1996) Selection of ligands for polyclonal antibodies from random peptide libraries: potential identification of (auto)antigens that may trigger B and T cell responses in autoimmune diseases. Clin Immunol and Immunopathol 79:105–114

    Article  CAS  Google Scholar 

  28. Kolonin M, Pasqualini R, Arap W (2001) Molecular addresses in blood vessels as targets for therapy. Curr Opin Chem Biol 5:308–313

    Article  CAS  PubMed  Google Scholar 

  29. Mummert ME, Mummert DI, Ellinger L, Takashima A (2003) Functional roles of hyaluronan in B16-F10 melanoma growth and experimental metastasis in mice. Mol Cancer Ther 2:295–300

    CAS  PubMed  Google Scholar 

  30. Agiostratidou G, Li MM, Suyama K, Badano I, Keren R, Chung S, Anzovino A, Hulit J, Qian BZ, Bouzahzah B, Eugenin E, Loudig O, Phillips GR, Locker J, Hazan RB (2009) Loss of retinal cadherin facilitates mammary tumor progression and metastasis. Cancer Res 69:5030–5038

    Article  CAS  PubMed  Google Scholar 

  31. Takeichi M, Watabe M, Shibamoto S, Ito F, Oda H, Uemura T, Shimamura K (1993) Dynamic control of cell–cell adhesion for multicellular organization. C R Acad Sci Serie III 316:818–821

    Google Scholar 

  32. Liu LX, Lee NP, Chan VW, Xue W, Zender L, Zhang CS, Mao M, Dai HY, Wang XL, Xu MZ, Lee TK, Ng IO, Chen YC, Kung HF, Lowe SW, Poon RTP, Wang JH, Luk JM (2009) Targeting cadherin-17 inactivates Wnt signaling and inhibits tumor growth in liver carcinoma. Hepatology 50:1453–1463

    Article  CAS  PubMed  Google Scholar 

  33. Zhou J, Li JM, Chen JZ, Liu YH, Gao WZ, Ding YQ (2009) Over-expression of CDH22 is associated with tumor progression in colorectal cancer. Tumor Biol 30:130–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisson L. Matsuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuo, A.L., Tanaka, A.S., Juliano, M.A. et al. A novel melanoma-targeting peptide screened by phage display exhibits antitumor activity. J Mol Med 88, 1255–1264 (2010). https://doi.org/10.1007/s00109-010-0671-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0671-9

Keywords

Navigation