Advertisement

Journal of Molecular Medicine

, Volume 88, Issue 9, pp 931–939 | Cite as

The difference between rare and exceptionally rare: molecular characterization of ribose 5-phosphate isomerase deficiency

  • Mirjam M. C. Wamelink
  • Nana-Maria Grüning
  • Erwin E. W. Jansen
  • Katharina Bluemlein
  • Hans Lehrach
  • Cornelis Jakobs
  • Markus Ralser
Original article

Abstract

Ribose 5-phosphate isomerase (RPI) deficiency is an enzymopathy of the pentose phosphate pathway. It manifests with progressive leukoencephalopathy and peripheral neuropathy and belongs, with one sole diagnosed case, to the rarest human disorders. The single patient was found compound heterozygous for a RPI frameshift and a missense (RPIAla61Val) allele. Here, we report that two patient-derived cell lines differ in RPI enzyme activity, enzyme concentration, and mRNA expression. Furthermore, we present a transgenic yeast model, which exhibits metabolite- and enzyme-activity changes that correspond to the human syndrome and show that the decrease in RPI activity in patient cells is not fully attributable to the residue exchange. Taken together, our results demonstrate that RPI deficiency is caused by the combination of a RPI null allele with an allele that encodes for a partially active enzyme which has, in addition, cell-type-dependent expression deficits. We speculate that a low probability for comparable traits accounts for the rareness of RPI deficiency.

Keywords

Ribose 5-phosphate isomerase deficiency Rare metabolic disease Carbohydrate metabolism Pentose phosphate pathway 

Notes

Acknowledgments

We thank our colleagues for critical reading of the manuscript, Antje Krüger, Andreas Dahl, Mirjam Blattner, and Nada Kumer for help with RNA extraction and qPCRs, Serkan Ceyhan and Yvonne Himst for help with the sugar-phosphate determination and the enzyme assays, Beata Lukaszewska-McGreal for proteomic sample preparation, and the Max Planck Institute for Molecular Genetics for funding. We declare no competing interests.

Supplementary material

109_2010_634_MOESM1_ESM.pdf (192 kb)
ESM 1 (PDF 192 kb)

References

  1. 1.
    Schlager G, Dickie MM (1971) Natural mutation rates in the house mouse. Estimates for five specific loci and dominant mutations. Mutat Res 11:89–96PubMedGoogle Scholar
  2. 2.
    Ralser M, Nebel A, Kleindorp R, Krobitsch S, Lehrach H, Schreiber S, Reinhardt R, Timmermann B (2008) Sequencing and genotypic analysis of the triosephosphate isomerase (TPI1) locus in a large sample of long-lived Germans. BMC Genet 9:38CrossRefPubMedGoogle Scholar
  3. 3.
    Schneider AS (2000) Triosephosphate isomerase deficiency: historical perspectives and molecular aspects. Baillières Best Pract Res Clin Haematol 13:119–140CrossRefPubMedGoogle Scholar
  4. 4.
    Ralser M, Heeren G, Breitenbach M, Lehrach H, Krobitsch S (2006) Triose phosphate isomerase deficiency is caused by altered dimerization—not catalytic inactivity—of the mutant enzymes. PLoS ONE 1:e30CrossRefPubMedGoogle Scholar
  5. 5.
    Orosz F, Olah J, Ovadi J (2009) Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim Biophys Acta 1792:1168–1174PubMedGoogle Scholar
  6. 6.
    Schneider A, Cohen-Solal M (1996) Hematologically important mutations: triosephosphate isomerase. Blood Cells Mol Dis 22:82–84CrossRefPubMedGoogle Scholar
  7. 7.
    van der Knaap MS, Wevers RA, Struys EA, Verhoeven NM, Pouwels PJ, Engelke UF, Feikema W, Valk J, Jakobs C (1999) Leukoencephalopathy associated with a disturbance in the metabolism of polyols. Ann Neurol 46:925–928CrossRefPubMedGoogle Scholar
  8. 8.
    Huck JH, Verhoeven NM, Struys EA, Salomons GS, Jakobs C, van der Knaap MS (2004) Ribose-5-phosphate isomerase deficiency: new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am J Hum Genet 74:745–751CrossRefPubMedGoogle Scholar
  9. 9.
    Ralser M, Zeidler U, Lehrach H (2009) Interfering with glycolysis causes Sir2-dependent hyper-recombination of Saccharomyces cerevisiae plasmids. PLoS ONE 4:e5376CrossRefPubMedGoogle Scholar
  10. 10.
    Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122CrossRefPubMedGoogle Scholar
  11. 11.
    Ralser M, Nonhoff U, Albrecht M, Lengauer T, Wanker EE, Lehrach H, Krobitsch S (2005) Ataxin-2 and huntingtin interact with endophilin-A complexes to function in plastin-associated pathways. Hum Mol Genet 14:2893–2909CrossRefPubMedGoogle Scholar
  12. 12.
    Yamaji R, Fujita K, Nakanishi I, Nagao K, Naito M, Tsuruo T, Inui H, Nakano Y (2004) Hypoxic up-regulation of triosephosphate isomerase expression in mouse brain capillary endothelial cells. Arch Biochem Biophys 423:332–342CrossRefPubMedGoogle Scholar
  13. 13.
    Kaiser P, Meierhofer D, Wang X, Huang L (2008) Tandem affinity purification combined with mass spectrometry to identify components of protein complexes. Methods Mol Biol 439:309–326CrossRefPubMedGoogle Scholar
  14. 14.
    Novello F, McLean P (1968) The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reactions of the cycle. Biochem J 107:775–791PubMedGoogle Scholar
  15. 15.
    Wamelink MM, Struys EA, Huck JH, Roos B, van der Knaap MS, Jakobs C, Verhoeven NM (2005) Quantification of sugar phosphate intermediates of the pentose phosphate pathway by LC-MS/MS: application to two new inherited defects of metabolism. J Chromatogr B Analyt Technol Biomed Life Sci 823:18–25CrossRefPubMedGoogle Scholar
  16. 16.
    Wamelink M, Jansen E, Struys E, Lehrach H, Jakobs C, Ralser M (2009) Quantification of Saccharomyces cerevisiae pentose-phosphate pathway intermediates by LC-MS/MS. Nature Protocols Network. doi: 10.1038/nprot.2009.140
  17. 17.
    Wamelink MM, Smith DE, Jakobs C, Verhoeven NM (2005) Analysis of polyols in urine by liquid chromatography-tandem mass spectrometry: a useful tool for recognition of inborn errors affecting polyol metabolism. J Inherit Metab Dis 28:951–963CrossRefPubMedGoogle Scholar
  18. 18.
    Linde L, Kerem B (2008) Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet 24:552–563CrossRefPubMedGoogle Scholar
  19. 19.
    Cappellini MD, Fiorelli G (2008) Glucose-6-phosphate dehydrogenase deficiency. Lancet 371:64–74CrossRefPubMedGoogle Scholar
  20. 20.
    Verhoeven NM, Huck JHJ, Roos B, Struys EA, Salomons GS, Douwes AC, van der Knaap MS, Jakobs C (2001) Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. Am J Hum Genet 68:1086–1092CrossRefPubMedGoogle Scholar
  21. 21.
    Wamelink MM, Struys EA, Jakobs C (2008) The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis 31:703–717CrossRefPubMedGoogle Scholar
  22. 22.
    Tylki-Szymanska A, Stradomska TJ, Wamelink MMC, Salomons GS, Taybert J, Pawlowska J, Jakobs C (2009) Transaldolase deficiency in two new patients with a relative mild phenotype. Mol Genet Metab 97:15–17CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mirjam M. C. Wamelink
    • 1
  • Nana-Maria Grüning
    • 2
  • Erwin E. W. Jansen
    • 1
  • Katharina Bluemlein
    • 2
  • Hans Lehrach
    • 2
  • Cornelis Jakobs
    • 1
  • Markus Ralser
    • 2
  1. 1.Department of Clinical ChemistryVU University Medical Center AmsterdamAmsterdamThe Netherlands
  2. 2.Max Planck Institute for Molecular GeneticsBerlinGermany

Personalised recommendations