Skip to main content

Advertisement

Log in

SYK kinase signaling and the NLRP3 inflammasome in antifungal immunity

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Host protection against fungi depends on intact innate and adaptive immune responses. Consistently, fungal infections can cause systemic life-threatening diseases in immunocomprimised individuals, suffering e.g. from cancer or AIDS. Recent work has uncovered essential roles for the spleen tyrosine kinase (SYK) and the cytosolic NLRP3 inflammasome for Interleukin-1β (IL-1β) production in innate antifungal immunity. Upon fungal infection, SYK is activated by several C-type lectin pattern recognition receptors on myeloid cells. Subsequently, SYK signals for the production of reactive oxygen species and for gene transcription to induce pro-inflammatory factors, including pro-IL-1β to initiate antifungal responses. Mature IL-1β production additionally requires cleavage of the pro-IL-1β precursor protein by the inflammatory caspase-1 which is controlled within the NLRP3 inflammasome. Here, we discuss how SYK signaling cooperates with the NLRP3 inflammasome for IL-1β production in antifungal immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bodey GP, Mardani M, Hanna HA, Boktour M, Abbas J, Girgawy E, Hachem RY, Kontoyiannis DP, Raad II (2002) The epidemiology of Candida glabrata and Candida albicans fungemia in immunocompromised patients with cancer. Am J Med 112:380–385. doi:S0002934301011305 [pii]

    Article  PubMed  Google Scholar 

  2. Klein RS, Harris CA, Small CB, Moll B, Lesser M, Friedland GH (1984) Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N Engl J Med 311:354–358

    Article  CAS  PubMed  Google Scholar 

  3. Holland SM, Vinh DC (2009) Yeast infections–human genetics on the rise. N Engl J Med 361:1798–1801. doi:361/18/1798 [pii] 10.1056/NEJMe0907186

    Article  CAS  PubMed  Google Scholar 

  4. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24, 179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317. doi:10.1086/421946CID32752 [pii]

    Article  PubMed  Google Scholar 

  5. Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143:1–20. doi:NYAS1143020 [pii] 10.1196/annals.1443.020

    Article  CAS  PubMed  Google Scholar 

  6. Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6:33–43. doi:nri1745 [pii] 10.1038/nri1745

    Article  CAS  PubMed  Google Scholar 

  7. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265. doi:10.1146/annurev.immunol.021908.132715

    Article  CAS  PubMed  Google Scholar 

  8. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Gross O, Verbeek JS, Ruland J, Tybulewicz V, Brown GD, Moita LF, Taylor PR, Reis e Sousa C (2009) Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206:2037–2051. doi:jem.20082818 [pii] 10.1084/jem.20082818

    Article  CAS  PubMed  Google Scholar 

  9. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis e Sousa C (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507–517. doi:S1074-7613(05)00095-6 [pii] 10.1016/j.immuni.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  10. Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, Beckhouse AG, Lo YL, Manzanero S, Cobbold C, Schroder K, Ma B, Orr S, Stewart L, Lebus D, Sobieszczuk P, Hume DA, Stow J, Blanchard H, Ashman RB (2008) The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 180:7404–7413. doi:180/11/7404 [pii]

    CAS  PubMed  Google Scholar 

  11. Tsoni SV, Brown GD (2008) beta-Glucans and Dectin-1. Ann N Y Acad Sci 1143:45–60. doi:NYAS1143019 [pii] 10.1196/annals.1443.019

    Article  CAS  PubMed  Google Scholar 

  12. Vonk AG, Netea MG, van Krieken JH, Iwakura Y, van der Meer JW, Kullberg BJ (2006) Endogenous interleukin (IL)-1 alpha and IL-1 beta are crucial for host defense against disseminated candidiasis. J Infect Dis 193:1419–1426. doi:JID35243 [pii] 10.1086/503363

    Article  CAS  PubMed  Google Scholar 

  13. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426. doi:S1097276502005993 [pii]

    Article  CAS  PubMed  Google Scholar 

  14. Geijtenbeek TB, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9:465–479. doi:nri2569 [pii] 10.1038/nri2569

    Article  CAS  PubMed  Google Scholar 

  15. Underhill DM, Rossnagle E, Lowell CA, Simmons RM (2005) Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106:2543–2550

    Article  CAS  PubMed  Google Scholar 

  16. Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, Forster I, Ruland J (2006) Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442:651–656

    Article  CAS  PubMed  Google Scholar 

  17. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V, Mocsai A, Tschopp J, Ruland J (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436. doi:nature07965 [pii] 10.1038/nature07965

    Article  CAS  PubMed  Google Scholar 

  18. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J, Reis e Sousa C (2007) Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8:630–638

    Article  CAS  PubMed  Google Scholar 

  19. Goodridge HS, Shimada T, Wolf AJ, Hsu YM, Becker CA, Lin X, Underhill DM (2009) Differential use of CARD9 by Dectin-1 in macrophages and dendritic cells. J Immunol 182:1146–1154

    CAS  PubMed  Google Scholar 

  20. Hara H, Ishihara C, Takeuchi A, Xue L, Morris SW, Penninger JM, Yoshida H, Saito T (2008) Cell type-specific regulation of ITAM-mediated NF-kappaB activation by the adaptors, CARMA1 and CARD9. J Immunol 181:918–930. doi:181/2/918 [pii]

    CAS  PubMed  Google Scholar 

  21. Hara H, Ishihara C, Takeuchi A, Imanishi T, Xue L, Morris SW, Inui M, Takai T, Shibuya A, Saijo S, Iwakura Y, Ohno N, Koseki H, Yoshida H, Penninger JM, Saito T (2007) The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol 8:619–629

    Article  CAS  PubMed  Google Scholar 

  22. Hara H, Saito T (2009) CARD9 versus CARMA1 in innate and adaptive immunity. Trends Immunol 30:234–242

    Article  CAS  PubMed  Google Scholar 

  23. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SC, Geijtenbeek TB (2009) Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 10:203–213. doi:ni.1692 [pii] 10.1038/ni.1692

    Article  CAS  PubMed  Google Scholar 

  24. Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8:31–38. doi:ni1408 [pii] 10.1038/ni1408

    Article  CAS  PubMed  Google Scholar 

  25. Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, Elbers CC, Johnson MD, Cambi A, Huysamen C, Jacobs L, Jansen T, Verheijen K, Masthoff L, Morre SA, Vriend G, Williams DL, Perfect JR, Joosten LA, Wijmenga C, van der Meer JW, Adema GJ, Kullberg BJ, Brown GD, Netea MG (2009) Human Dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361:1760–1767. doi:361/18/1760 [pii] 10.1056/NEJMoa0901053

    Article  CAS  PubMed  Google Scholar 

  26. Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, Salzer U, Pfeifer D, Veelken H, Warnatz K, Tahami F, Jamal S, Manguiat A, Rezaei N, Amirzargar AA, Plebani A, Hannesschlager N, Gross O, Ruland J, Grimbacher B (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361:1727–1735. doi:361/18/1727 [pii] 10.1056/NEJMoa0810719

    Article  CAS  PubMed  Google Scholar 

  27. McGreal EP, Rosas M, Brown GD, Zamze S, Wong SY, Gordon S, Martinez-Pomares L, Taylor PR (2006) The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 16:422–430. doi:cwj077 [pii] 10.1093/glycob/cwj077

    Article  CAS  PubMed  Google Scholar 

  28. Barrett NA, Maekawa A, Rahman OM, Austen KF, Kanaoka Y (2009) Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J Immunol 182:1119–1128. doi:182/2/1119 [pii]

    CAS  PubMed  Google Scholar 

  29. Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, Tateno H, Uno J, Hirabayashi J, Mikami Y, Takeda K, Akira S, Saito T (2009) C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci U S A 106:1897–1902. doi:0805177106 [pii] 10.1073/pnas.0805177106

    Article  CAS  PubMed  Google Scholar 

  30. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888. doi:jem.20091750 [pii] 10.1084/jem.20091750

    Article  CAS  PubMed  Google Scholar 

  31. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9:1179–1188. doi:ni.1651 [pii] 10.1038/ni.1651

    Article  CAS  PubMed  Google Scholar 

  32. Means TK, Mylonakis E, Tampakakis E, Colvin RA, Seung E, Puckett L, Tai MF, Stewart CR, Pukkila-Worley R, Hickman SE, Moore KJ, Calderwood SB, Hacohen N, Luster AD, El Khoury J (2009) Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med 206:637–653. doi:jem.20082109 [pii] 10.1084/jem.20082109

    Article  CAS  PubMed  Google Scholar 

  33. Yu HB, Finlay BB (2008) The caspase-1 inflammasome: a pilot of innate immune responses. Cell Host Microbe 4:198–208

    Article  CAS  PubMed  Google Scholar 

  34. Pedra JH, Cassel SL, Sutterwala FS (2009) Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol 21:10–16. doi:S0952-7915(09)00006-5 [pii] 10.1016/j.coi.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  35. Sutterwala FS, Flavell RA (2009) NLRC4/IPAF: a CARD carrying member of the NLR family. Clin Immunol 130:2–6. doi:S1521-6616(08)00774-2 [pii] 10.1016/j.clim.2008.08.011

    Article  CAS  PubMed  Google Scholar 

  36. Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL, Superti-Furga G (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10:266–272. doi:ni.1702 [pii] 10.1038/ni.1702

    Article  PubMed  CAS  Google Scholar 

  37. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513. doi:nature07710 [pii] 10.1038/nature07710

    Article  CAS  PubMed  Google Scholar 

  38. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518. doi:nature07725 [pii] 10.1038/nature07725

    Article  CAS  PubMed  Google Scholar 

  39. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, Hume DA, Stacey KJ (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057–1060. doi:1169841 [pii] 10.1126/science.1169841

    Article  CAS  PubMed  Google Scholar 

  40. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, Hannesschlager N, Schlee M, Rothenfusser S, Barchet W, Kato H, Akira S, Inoue S, Endres S, Peschel C, Hartmann G, Hornung V, Ruland J (2009) Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 11:63–69. doi:ni.1824 [pii] 10.1038/ni.1824

    Article  PubMed  CAS  Google Scholar 

  41. Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5:487–497. doi:S1931-3128(09)00143-7 [pii] 10.1016/j.chom.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  42. Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS (2009) Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183:3578–3581. doi:jimmunol.0901323 [pii] 10.4049/jimmunol.0901323

    Article  CAS  PubMed  Google Scholar 

  43. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  CAS  PubMed  Google Scholar 

  44. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  CAS  PubMed  Google Scholar 

  45. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  CAS  PubMed  Google Scholar 

  46. Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P, Bertin J, Coyle A, Grant EP, Akira S, Nunez G (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–236

    Article  CAS  PubMed  Google Scholar 

  47. Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232

    Article  CAS  PubMed  Google Scholar 

  48. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107

    Article  CAS  PubMed  Google Scholar 

  49. Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E, Taxman DJ, Guthrie EH, Pickles RJ, Ting JP (2009) The NLRP3 inflammasome mediates in vivo innate immunity to influenza a virus through recognition of viral RNA. Immunity 30:556–565

    Article  CAS  PubMed  Google Scholar 

  50. Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A (2009) Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 206:79–87

    Article  CAS  PubMed  Google Scholar 

  51. Thomas PG, Dash P, Aldridge JR Jr, Ellebedy AH, Reynolds C, Funk AJ, Martin WJ, Lamkanfi M, Webby RJ, Boyd KL, Doherty PC, Kanneganti TD (2009) The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30:566–575

    Article  CAS  PubMed  Google Scholar 

  52. Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126

    Article  CAS  PubMed  Google Scholar 

  53. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  CAS  PubMed  Google Scholar 

  54. Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG, Ting JP (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A 104:8041–8046. doi:0611496104 [pii] 10.1073/pnas.0611496104

    Article  CAS  PubMed  Google Scholar 

  55. Romani L (2004) Immunity to fungal infections. Nat Rev Immunol 4:1–23. doi:10.1038/nri1255nri1255 [pii]

    Article  PubMed  CAS  Google Scholar 

  56. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589

    Article  CAS  PubMed  Google Scholar 

  57. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, Macdonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-{kappa}B activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    Article  CAS  PubMed  Google Scholar 

  58. Kumar H, Kumagai Y, Tsuchida T, Koenig PA, Satoh T, Guo Z, Jang MH, Saitoh T, Akira S, Kawai T (2009) Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal beta-glucan. J Immunol 183:8061–8067. doi:183/12/8061 [pii] 10.4049/jimmunol.0902477

    Article  CAS  PubMed  Google Scholar 

  59. Lamkanfi M, Malireddi RK, Kanneganti TD (2009) Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem 284:20574–20581. doi:M109.023689 [pii] 10.1074/jbc.M109.023689

    Article  CAS  PubMed  Google Scholar 

  60. Dinarello CA (2009) Interleukin-1beta and the autoinflammatory diseases. N Engl J Med 360:2467–2470. doi:360/23/2467 10.1056/NEJMe0811014

    Article  CAS  PubMed  Google Scholar 

  61. Ng G, Sharma K, Ward SM, Desrosiers MD, Stephens LA, Schoel WM, Li T, Lowell CA, Ling CC, Amrein MW, Shi Y (2008) Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29:807–818. doi:S1074-7613(08)00463-9 [pii] 10.1016/j.immuni.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  62. Tiemi Shio M, Eisenbarth SC, Savaria M, Vinet AF, Bellemare MJ, Harder KW, Sutterwala FS, Bohle DS, Descoteaux A, Flavell RA, Olivier M (2009) Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5:e1000559. doi:10.1371/journal.ppat.1000559

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory is supported by a Max-Eder-Program grant from Deutsche Krebshilfe and SFB grants of the DFG to J.R. We thank Olaf Gross, Tobias Haas, and Konstanze Pechloff for critically reading the manuscript.

Disclosure

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Ruland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poeck, H., Ruland, J. SYK kinase signaling and the NLRP3 inflammasome in antifungal immunity. J Mol Med 88, 745–752 (2010). https://doi.org/10.1007/s00109-010-0631-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0631-4

Keywords

Navigation