Skip to main content
Log in

The anti-angiogenic activity of IL-12 is increased in iNOS−/− mice and involves NK cells

  • Original article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We have previously reported that the in vivo transfer of murine interleukin-12 (IL-12) gene using a Semliki Forest virus vector induced tumor regression through inhibition of tumor blood vessel formation. To examine whether IL-12 anti-angiogenic activity interferes with the NO pathway, we used inducible nitric oxide synthase-deficient mice (iNOS/) and demonstrated that the anti-tumor effect of IL-12 is more pronounced in these mice. In addition, despite the increased level of intratumoral VEGF in iNOS/ mice, IL-12 induced a stronger inhibition of blood vessel formation. Histological analysis of SFV-IL-12-treated tumors showed an increase in natural killer (NK) perivascular infiltration in iNOS/ as compared to control mice. In vitro IL-12-stimulated murine splenic NK cells displayed significant killing activity towards established murine endothelial cells used as targets. These studies indicate that the anti-angiogenic activity of IL-12 interferes with iNOS pathway and involves NK cell recruitment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EC:

Endothelial cell

NOS:

Nitric oxide synthase

VEGF:

Vascular endothelial growth factor

References

  1. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170:827–845

    Article  CAS  PubMed  Google Scholar 

  2. Popovic D, El-Shami KM, Vadai E, Feldman M, Tzehoval E, Eisenbach L (1998) Antimetastatic vaccination against Lewis lung carcinoma with autologous tumor cells modified to express murine interleukin 12. Clin Exp Metastasis 16:623–632

    Article  CAS  PubMed  Google Scholar 

  3. Kirou KA, Vakkalanka RK, Butler MJ, Crow MK (2000) Induction of Fas ligand-mediated apoptosis by interferon-alpha. Clin Immunol 95:218–226

    Article  CAS  PubMed  Google Scholar 

  4. Koblish HK, Hunter CA, Wysocka M, Trinchieri G, Lee WM (1998) Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect. J Exp Med 188:1603–1610

    Article  CAS  PubMed  Google Scholar 

  5. Thomsen LL, Miles DW (1998) Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev 17:107–118

    Article  CAS  PubMed  Google Scholar 

  6. Cianchi F, Cortesini C, Fantappie O, Messerini L, Schiavone N, Vannacci A, Nistri S, Sardi I, Baroni G, Marzocca C, Perna F, Mazzanti R, Bechi P, Masini E (2003) Inducible nitric oxide synthase expression in human colorectal cancer: correlation with tumor angiogenesis. Am J Pathol 162:793–801

    CAS  PubMed  Google Scholar 

  7. Salvucci O, Kolb JP, Dugas B, Dugas N, Chouaib S (1998) The induction of nitric oxide by interleukin-12 and tumor necrosis factor-alpha in human natural killer cells: relationship with the regulation of lytic activity. Blood 92:2093–2102

    CAS  PubMed  Google Scholar 

  8. Albertsson PA, Basse PH, Hokland M, Goldfarb RH, Nagelkerke JF, Nannmark U, Kuppen PJ (2003) NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol 24:603–609

    Article  CAS  PubMed  Google Scholar 

  9. Kwiatkowski B, Artrip JH, Michler RE, Itescu S (1997) Human NK cells demonstrate increased adherence and lysis of porcine endothelium following activation with IL-2. Ann Transplant 2:21–25

    CAS  PubMed  Google Scholar 

  10. Bielawska-Pohl A, Crola C, Caignard A, Gaudin C, Dus D, Kieda C, Chouaib S (2005) Human NK cells lyse organ-specific endothelial cells: analysis of adhesion and cytotoxic mechanisms. J Immunol 174:5573–5582

    CAS  PubMed  Google Scholar 

  11. Kirk AD, Heinle JS, Mault JR, Sanfilippo F (1993) Ex vivo characterization of human anti-porcine hyperacute cardiac rejection. Transplantation 56:785–793

    Article  CAS  PubMed  Google Scholar 

  12. Horvath-Arcidiacono JA, Tsuyuki S, Mostowski H, Bloom ET (2003) Human natural killer cell activity against porcine targets: modulation by control of the oxidation-reduction environment and role of adhesion molecule interactions. Cell Immunol 222:35–44

    Article  CAS  PubMed  Google Scholar 

  13. Kieda C (2003) How endothelial cell organo-specificity mediates circulating cell homing. Arch Immunol Ther Exp (Warsz) 51:81–89

    CAS  Google Scholar 

  14. Strasly M, Cavallo F, Geuna M, Mitola S, Colombo MP, Forni G, Bussolino F (2001) IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk. J Immunol 166:3890–3899

    CAS  PubMed  Google Scholar 

  15. Chen WS, Kitson RP, Goldfarb RH (2002) Modulation of human NK cell lines by vascular endothelial growth factor and receptor VEGFR-1 (FLT-1). In vivo 16:439–445

    CAS  PubMed  Google Scholar 

  16. Huang X, Orucevic A, Li M, Gorelik E (2000) Nitric oxide (NO), methylation and TIMP-1 expression in BL6 melanoma cells transfected with MHC class I genes. Clin Exp Metastasis 18:329–335

    Article  CAS  PubMed  Google Scholar 

  17. Zhang XM, Xu Q (2001) Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes. Melanoma Res 11:559–567

    Article  CAS  PubMed  Google Scholar 

  18. Kieda C, Paprocka M, Krawczenko A, Zalecki P, Dupuis P, Monsigny M, Radzikowski C, Dus D (2002) New human microvascular endothelial cell lines with specific adhesion molecules phenotypes. Endothelium 9:247–261

    Article  CAS  PubMed  Google Scholar 

  19. Bizouarne N, Denis V, Legrand A, Monsigny M, Kieda C (1993) A SV-40 immortalized murine endothelial cell line from peripheral lymph node high endothelium expresses a new alpha-L-fucose binding protein. Biol Cell 79:209–218

    Article  CAS  PubMed  Google Scholar 

  20. Asselin-Paturel C, Lassau N, Guinebretiere JM, Zhang J, Gay F, Bex F, Hallez S, Leclere J, Peronneau P, Mami-Chouaib F, Chouaib S (1999) Transfer of the murine interleukin-12 gene in vivo by a Semliki Forest virus vector induces B16 tumor regression through inhibition of tumor blood vessel formation monitored by Doppler ultrasonography. Gene Ther 6:606–615

    Article  CAS  PubMed  Google Scholar 

  21. Waldow T, Witt W, Weber E, Matschke K (2006) Nitric oxide donor-induced persistent inhibition of cell adhesion protein expression and NFkappaB activation in endothelial cells. Nitric Oxide 15:103–113

    Article  CAS  PubMed  Google Scholar 

  22. Cobbs CS, Brenman JE, Aldape KD, Bredt DS, Israel MA (1995) Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res 55:727–730

    CAS  PubMed  Google Scholar 

  23. Fitzpatrick B, Mehibel M, Cowen RL, Stratford IJ (2008) iNOS as a therapeutic target for treatment of human tumors. Nitric Oxide 19:217–224. doi:S1089-8603(08)00081-5

    Article  CAS  PubMed  Google Scholar 

  24. Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S (1995) Nitric oxide synthase activity in human breast cancer. Br J Cancer 72:41–44

    CAS  PubMed  Google Scholar 

  25. Coulet F, Nadaud S, Agrapart M, Soubrier F (2003) Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 278:46230–46240

    Article  CAS  PubMed  Google Scholar 

  26. Presley T, Vedam K, Velayutham M, Zweier JL, Ilangovan G (2008) Activation of Hsp90-eNOS and increased NO generation attenuate respiration of hypoxia-treated endothelial cells. Am J Physiol Cell Physiol 295:C1281–C1291

    Article  CAS  PubMed  Google Scholar 

  27. Ambs S, Merriam WG, Ogunfusika MO, Bennett WP, Ishibe N, Hussain SP, Tzeng EE, Geller DA, Billiar TR, Harris CC (1998) p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat Med 4:1371–1376

    Article  CAS  PubMed  Google Scholar 

  28. Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S (1995) Roles of nitric oxide in tumor growth. Proc Natl Acad Sci USA 92:4392–4396

    Article  CAS  PubMed  Google Scholar 

  29. Jones MK, Tsugawa K, Tarnawski AS, Baatar D (2004) Dual actions of nitric oxide on angiogenesis: possible roles of PKC, ERK, and AP-1. Biochem Biophys Res Commun 318:520–528

    Article  CAS  PubMed  Google Scholar 

  30. Lala PK, Orucevic A (1998) Role of nitric oxide in tumor progression: lessons from experimental tumors. Cancer Metastasis Rev 17:91–106

    Article  CAS  PubMed  Google Scholar 

  31. Medot-Pirenne M, Heilman MJ, Saxena M, McDermott PE, Mills CD (1999) Augmentation of an antitumor CTL response in vivo by inhibition of suppressor macrophage nitric oxide. J Immunol 163:5877–5882

    CAS  PubMed  Google Scholar 

  32. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68

    Article  PubMed  Google Scholar 

  33. Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM (1996) Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA 93:9114–9119

    Article  CAS  PubMed  Google Scholar 

  34. Butcher EC, Williams M, Youngman K, Rott L, Briskin M (1999) Lymphocyte trafficking and regional immunity. Adv Immunol 72:209–253

    Article  CAS  PubMed  Google Scholar 

  35. Yoneda O, Imai T, Goda S, Inoue H, Yamauchi A, Okazaki T, Imai H, Yoshie O, Bloom ET, Domae N, Umehara H (2000) Fractalkine-mediated endothelial cell injury by NK cells. J Immunol 164:4055–4062

    CAS  PubMed  Google Scholar 

  36. Mulligan JK, Day TA, Gillespie MB, Rosenzweig SA, Young MR (2009) Secretion of vascular endothelial growth factor by oral squamous cell carcinoma cells skews endothelial cells to suppress T-cell functions. Hum Immunol 70:375–382

    Article  CAS  PubMed  Google Scholar 

  37. Mulligan JK, Young MR (2009) Tumors induce the formation of suppressor endothelial cells in vivo. Cancer Immunol Immunother 59(2):267–277

    Article  Google Scholar 

  38. Manna PP, Duffy B, Olack B, Lowell J, Mohanakumar T (2001) Activation of human dendritic cells by porcine aortic endothelial cells: transactivation of naive T cells through costimulation and cytokine generation. Transplantation 72:1563–1571

    Article  CAS  PubMed  Google Scholar 

  39. Benlalam H, Jalil A, Hasmim M, Pang B, Tamouza R, Mitterrand M, Godet Y, Lamerant N, Robert C, Avril MF, Neefjes J, Tursz T, Mami-Chouaib F, Kieda C, Chouaib S (2009) Gap junction communication between autologous endothelial and tumor cells induce cross-recognition and elimination by specific CTL. J Immunol 182:2654–2664

    Article  CAS  PubMed  Google Scholar 

  40. Banich JC, Kolesiak K, Young MR (2003) Chemoattraction of CD34+ progenitor cells and dendritic cells to the site of tumor excision as the first step of an immunotherapeutic approach to target residual tumor cells. J Immunother 26:31–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank P. Bouckaert for kindly providing the iNOS/ mice.

Disclosures

The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem Chouaib.

Additional information

Aleksandra Bielawska-Pohl and Séverine Blesson contributed equally to this work.

This work was supported in part by grants from Institut National de la Santé et de la Recherche Médicale (INSERM), ARC association pour le Recherche sur le Cancer N°1025, Institut National du Cancer (INCa), Canceropole Ile de France and Canceropole Grand Ouest and the Polish Ministry of Science and Higher Education N401 149 32/2837.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielawska-Pohl, A., Blesson, S., Benlalam, H. et al. The anti-angiogenic activity of IL-12 is increased in iNOS−/− mice and involves NK cells. J Mol Med 88, 775–784 (2010). https://doi.org/10.1007/s00109-010-0620-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0620-7

Keywords

Navigation