Skip to main content
Log in

ADAM8 is a negative regulator of retinal neovascularization and of the growth of heterotopically injected tumor cells in mice

  • Original article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

ADAM8 is a member of the “a disintegrin and metalloproteinase” (ADAM) family of membrane-anchored metalloproteinases. ADAM8-deficient mice have no evident spontaneous developmental or pathological defects, and little is currently known about the role of ADAM8 in disease. Here, we investigated the contribution of ADAM8 to pathological neovascularization in mice using an oxygen-induced retinopathy (OIR) model and heterotopical injection of tumor cells. We found an increase in retinal re-vascularization but fewer neovascular tufts in the OIR model and increased growth of heterotopically injected tumor cells in Adam8-/- mice compared with wild-type controls. These results suggest that ADAM8 functions to limit both of these processes in wild-type mice. In cell-based assays, overexpression of ADAM8 increased the ectodomain shedding of several co-expressed membrane proteins with roles in angiogenesis (CD31, Tie-2, Flk-1, Flt-1, EphrinB2, EphB4, VE-cadherin, KL-1, E-selectin, and neuregulin-1β2). Thus, dysregulated expression of ADAM8 in endothelial cells in vivo could potentially increase the processing of these and other substrate proteins. Taken together, our findings suggest that inhibiting ADAM8 could be useful for promoting re-vascularization and thereby preventing formation of neovascular tufts in proliferative retinopathies. On the other hand, blocking ADAM8 could be detrimental in the context of rapidly growing tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Friedlander M, Dorrell MI, Ritter MR, Marchetti V, Moreno SK, El-Kalay M, Bird AC, Banin E, Aguilar E (2007) Progenitor cells and retinal angiogenesis. Angiogenesis 10:89–101

    Article  PubMed  Google Scholar 

  2. Bradley J, Ju M, Robinson GS (2007) Combination therapy for the treatment of ocular neovascularization. Angiogenesis 10:141–148

    Article  PubMed  CAS  Google Scholar 

  3. Chen J, Smith LE (2007) Retinopathy of prematurity. Angiogenesis 10:133–140

    Article  PubMed  Google Scholar 

  4. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  PubMed  CAS  Google Scholar 

  5. Khong TL, Larsen H, Raatz Y, Paleolog E (2007) Angiogenesis as a therapeutic target in arthritis: learning the lessons of the colorectal cancer experience. Angiogenesis 10:243–258

    Article  PubMed  CAS  Google Scholar 

  6. Sherris D (2007) Ocular drug development—future directions. Angiogenesis 10:71–76

    Article  PubMed  Google Scholar 

  7. Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29:10–14

    PubMed  CAS  Google Scholar 

  8. Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102:637–652

    Article  PubMed  CAS  Google Scholar 

  9. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  10. Blobel CP (2005) ADAMs: key players in EGFR-signaling, development and disease. Nat Rev Mol Cell Biol 6:32–43

    Article  PubMed  CAS  Google Scholar 

  11. Murphy G (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 12:929–941

    Google Scholar 

  12. Yoshida S, Setoguchi M, Higuchi Y, Akizuki S, Yamamoto S (1990) Molecular cloning of cDNA encoding MS2 antigen, a novel cell surface antigen strongly expressed in murine monocytic lineage. Int Immunol 2:586–591

    Google Scholar 

  13. Yoshiyama K, Higuchi Y, Kataoka M, Matsuura K, Yamamoto S (1997) CD156 (human ADAM8): expression, primary amino acid sequence, and gene location. Genomics 41:56–62

    Article  PubMed  CAS  Google Scholar 

  14. Choi SJ, Han JH, Roodman GD (2001) ADAM8: a novel osteoclast stimulating factor. J Bone Miner Res 16:814–822

    Article  PubMed  CAS  Google Scholar 

  15. Mandelin J, Li TF, Hukkanen MV, Liljestrom M, Chen ZK, Santavirta S, Kitti U, Konttinen YT (2003) Increased expression of a novel osteoclast-stimulating factor, ADAM8, in interface tissue around loosened hip prostheses. J Rheumatol 30:2033–2038

    PubMed  CAS  Google Scholar 

  16. Hodgkinson CP, Ye S (2003) Microarray analysis of peroxisome proliferator-activated receptor-gamma induced changes in gene expression in macrophages. Biochem Biophys Res Commun 308:505–510

    Article  PubMed  CAS  Google Scholar 

  17. Kelly K, Hutchinson G, Klewe-Nebenius D, Smith A, Bartsch JW, Horiuchi K, Manova K, Docherty AJ, Blobel CP (2005) Metalloprotese–disintegrin ADAM8: expression analysis and targeted deletion in mice. Dev Dyn 232:221–231

    Article  PubMed  CAS  Google Scholar 

  18. Amour A, Knight C, English W, Webster A, Slocombe P, Knauper V, Docherty A, Becherer J, Blobel C, Murphy G (2002) The enzymatic activity of ADAM8 and ADAM9 is not regulated by TIMPs. FEBS Lett 524:154–158

    Article  PubMed  CAS  Google Scholar 

  19. Schlomann U, Wildeboer D, Webster A, Antropova O, Zeuschner D, Knight CG, Docherty AJ, Lambert M, Skelton L, Jockusch H, Bartsch JW (2002) The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. J Biol Chem 277:48210–48219

    Article  PubMed  CAS  Google Scholar 

  20. Fourie AM, Coles F, Moreno V, Karlsson L (2003) Catalytic activity of ADAM8, ADAM15, and MDC-L (ADAM28) on synthetic peptide substrates and in ectodomain cleavage of CD23. J Biol Chem 278:30469–30477

    Article  PubMed  CAS  Google Scholar 

  21. Schlomann U, Rathke-Hartlieb S, Yamamoto S, Jockusch H, Bartsch JW (2000) Tumor necrosis factor alpha induces a metalloprotease–disintegrin, ADAM8 (CD 156): implications for neuron-glia interactions during neurodegeneration. J Neurosci 20:7964–7971

    PubMed  CAS  Google Scholar 

  22. Horiuchi K, Le Gall S, Schulte M, Yamaguchi T, Reiss K, Murphy G, Toyama Y, Hartmann D, Saftig P, Blobel C (2007) Substrate selectivity of EGF-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell 18:176–188

    Article  PubMed  CAS  Google Scholar 

  23. Weskamp G, Ford J, Sturgill J, Martin S, Docherty A, Swendeman S, Broadway N, Hartmann D, Saftig P, Umland S, Sehara-Fujisawa A, Black R, Ludwig A, Becherer D, Conrad D, Blobel C (2006) ADAM10 is a principal ‘sheddase’ of the low-affinity immunoglobulin E receptor CD23. Nat Immunol 7:1298–1393

    Article  CAS  Google Scholar 

  24. Gomez-Gaviro M, Dominguez-Luis M, Canchado J, Calafat J, Janssen H, Lara-Pezzi E, Fourie A, Tugores A, Valenzuela-Fernandez A, Mollinedo F, Sanchez-Madrid F, Diaz-Gonzalez F (2007) Expression and regulation of the metalloproteinase ADAM-8 during human neutrophil pathophysiological activation and its catalytic activity on L-selectin shedding. J Immunol 178:8053–8063

    PubMed  CAS  Google Scholar 

  25. Ainola M, Li TF, Mandelin J, Hukkanen M, Choi SJ, Salo J, Konttinen YT (2009) Involvement of a disintegrin and a metalloproteinase 8 (ADAM8) in osteoclastogenesis and pathological bone destruction. Ann Rheum Dis 68:427–434

    Article  PubMed  CAS  Google Scholar 

  26. Wildeboer D, Naus S, Amy Sang QX, Bartsch JW, Pagenstecher A (2006) Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness. J Neuropathol Exp Neurol 65:516–527

    Article  PubMed  CAS  Google Scholar 

  27. King NE, Zimmermann N, Pope SM, Fulkerson PC, Nikolaidis NM, Mishra A, Witte DP, Rothenberg ME (2004) Expression and regulation of a disintegrin and metalloproteinase (ADAM) 8 in experimental asthma. Am J Respir Cell Mol Biol 31:257–265

    Article  PubMed  CAS  Google Scholar 

  28. Horiuchi K, Weskamp G, Lum L, Hammes HP, Cai H, Brodie TA, Ludwig T, Chiusaroli R, Baron R, Preissner KT, Manova K, Blobel CP (2003) Potential role for ADAM15 in pathological neovascularization in mice. Mol Cell Biol 23:5614–5624

    Article  PubMed  CAS  Google Scholar 

  29. Guaiquil V, Swendeman S, Yoshida T, Chavala S, Campochiaro P, Blobel CP (2009) ADAM9 is involved in pathological retinal neovascularization. Mol Cell Biol 29:2694–2703

    Article  PubMed  CAS  Google Scholar 

  30. Hammes HP, Brownlee M, Jonczyk A, Sutter A, Preissner KT (1996) Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat Med 2:529–533

    Article  PubMed  CAS  Google Scholar 

  31. Swendeman S, Mendelson K, Weskamp G, Horiuchi K, Deutsch U, Scherle P, Hooper A, Rafii S, Blobel CP (2008) VEGF-A stimulates ADAM17-dependent shedding of VEGFR2 and crosstalk between VEGFR2 and ERK signaling. Circ Res 103:916–918

    Article  PubMed  CAS  Google Scholar 

  32. Kawaguchi N, Horiuchi K, Becherer JD, Toyama Y, Besmer P, Blobel CP (2007) Different ADAMs have distinct influences on Kit ligand processing: phorbol-ester-stimulated ectodomain shedding of Kitl1 by ADAM17 is reduced by ADAM19. J Cell Sci 120:943–952

    Article  PubMed  CAS  Google Scholar 

  33. Zhou HM, Weskamp G, Chesneau V, Sahin U, Vortkamp A, Horiuchi K, Chiusaroli R, Hahn R, Wilkes D, Fisher P, Baron R, Manova K, Basson CT, Hempstead BL, Blobel CP (2004) Essential role for ADAM19 in cardiovascular morphogenesis. Mol Cell Biol 24:96–104

    Article  PubMed  CAS  Google Scholar 

  34. Naus S, Reipschlager S, Wildeboer D, Lichtenthaler SF, Mitterreiter S, Guan Z, Moss ML, Bartsch JW (2006) Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8. Biol Chem 387:337–346

    Article  PubMed  CAS  Google Scholar 

  35. Naus S, Richter M, Wildeboer D, Moss M, Schachner M, Bartsch JW (2004) Ectodomain shedding of the neural recognition molecule CHL1 by the metalloprotease-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death. J Biol Chem 279:16083–16090

    Article  PubMed  CAS  Google Scholar 

  36. Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NEI grant EY015758 to CPB. We thank Dr. Andrew Docherty from UCB NewMedicines for providing Adam8-/- mice and Mrs. Elin Mogollon, Mr. Arash Shirazi, and Mr. Joshua Namm as well as the staff of the Center for Laboratory Animal Services of the Hospital for Special Surgery for excellent technical assistance.

Conflict of interest

The authors reported no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl P. Blobel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guaiquil, V.H., Swendeman, S., Zhou, W. et al. ADAM8 is a negative regulator of retinal neovascularization and of the growth of heterotopically injected tumor cells in mice. J Mol Med 88, 497–505 (2010). https://doi.org/10.1007/s00109-010-0591-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0591-8

Keywords

Navigation