IL-2 −330 T/G SNP and serum values—potential new tumor markers in neuroendocrine tumors of the gastrointestinal tract and pancreas (GEP-NETs)

Abstract

Cytokines participate in tumorigenesis of gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Single nucleotide polymorphisms (SNPs) in cytokine genes influence expression of proteins and are evaluated in cancer susceptibility. The aim of this study was to evaluate IL-2 −330 T/G SNP and susceptibility to GEP-NETs, and analyze the correlation between G-allele and IL-2 serum values in GEP-NET patients. Moreover we assessed the value of IL-2 as a tumor serum marker. IL-2 −330 T/G SNP was examined in 101 patients and 150 healthy volunteers and IL-2 serum levels in patients and 20 controls. Patients’ IL-2 serum levels were compared to IL-2 −330 T/G genotypes and tumor functional status and finally with known markers such as chromogranin A (CgA) and 5-hydroxyindolacetic acid (5-HIAA). There was a significant difference in genotype distribution of the IL-2 −330 polymorphisms between GEP-NET and control group (p = 0.0006) as well as in the frequency of G-allele (p = 0.010). G-allele correlated with higher IL-2 serum levels (p = 0.028) and elevated in all patients, being highest in patients with functional tumors (p = 0.039). Compared to CgA and 5-HIAA, IL-2 was more specific in detecting GEP-NET patients (p < 0.0001 and p < 0.0001, respectively). Our results indicate importance of IL-2 in GEP-NET development and biochemical diagnosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Wiedenmann B, Pape UF (2004) From basic to clinical research in gastroenteropancreatic neuroendocrine tumor disease-the clinician-scientist perspective. Neuroendocrinology 80(suppl 1):94–98

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Rindi G, Bordi C (2003) Highlights of the biology of endocrine tumours of the gut and pancreas. Endocr Relat Cancer 10:427–36

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Rindi G, Leiter AB, Kopin AS, Bordi C, Solcia E (2004) The «normal» endocrine cell of the gut: changing concepts and new evidences. Ann N Y Acad Sci 1014:1–12

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Erikkson B, Oberg K, Stridsberg M (2000) Tumor markers in neuroendocrine tumors. Digestion 62(suppl 1):33–38

    Article  Google Scholar 

  5. 5.

    Panzuto F, Nasoni S, Falconi M, Corleto VD, Capurso G, Cassetta S, Di Fonzo M, Tornatore V, Milione M, Angeletti S, Cattaruzza MS, Ziparo V, Bordi C, Pederzoli P, Delle Fave G (2005) Prognostic factors and survival in endocrine tumor patients: comparison between gastrointestinal and pancreatic localization. Endocr Relat Cancer 12:1083–1092

    Article  PubMed  Google Scholar 

  6. 6.

    Zikusoka MN, Kidd M, Eick G, Latich I, Modlin IM (2005) The molecular genetics of gastroenteropancreatic neuroendocrine tumors. Cancer 104:2292–2309

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Toumpanakis CG, Caplin ME (2008) Molecular genetics of gastroenteropancreatic neuroendocrine tumors. Am J Gastroenterol 103:729–732

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Wulbrand U, Wied M, Zöfel P, Göke B, Arnold R, Fehmann HC (1998) Growth factor receptor expression in human gastroenteropancreatic neuroendocrine tumors. European J Clin Invest 28:1038–1049

    Article  CAS  Google Scholar 

  9. 9.

    Calender A (2000) Molecular genetics of neuroendocrine tumors. Digestion 62(suppl 1):3–18

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Mocellin S, Wang E, Marincola FM (2001) Cytokines and immune response in the tumor microenvironment. J Immunother 24:392–407

    Article  CAS  Google Scholar 

  11. 11.

    Kulke MH (2007) Gastrointestinal neuroendocrine tumors: a role for targeted therapies? Endocr Relat Cancer 14:207–219

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Togawa S, Joh T, Itoh M, Katsuda N, Ito H, Matsuo K, Tajima K, Hamajima N (2005) Interleukin-2 gene polymorphisms associated with increased risk of gastric atrophy from Helicobacter pylori infection. Helicobacter 10:172–178

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Quian BF, El-Salhy M, Melgar S, Hammarström ML, Danielsson A (2000) Neuroendocrine changes in colon of mice with disrupted IL-2 gene. Clin Exp Immunol 120:424–433

    Article  Google Scholar 

  14. 14.

    Garrelds IM, van Meeteren ME, Meijssen MAC, Zijlstra FJ (2002) Interleukin-2-defficient mice: effect on cytokines and inflammatory cells in chronic colonic disease. Dig Dis Sci 47:503–510

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Spaventi R, Pečur L, Pavelić K, Pavelić ZP, Spaventi Š, Stambrook PJ (1994) Human Tumr Bank in Croatia: a possible model for small bank as a part of the future European Tumor bank Network. Eur J Cancer 30A:419–419

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Hofsli E, Thommesen L, Yadetie F, Langaas M, Kusnierczyk W, Falkmer U, Sandvik AK, Laegreid A (2005) Identification of novel growth-factor responsive genes in neuroendocrine gastrointestinal tumor cells. Br J Cancer 92:1506–1516

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Ranson M (2004) Epidermal growth factor receptor tyrosine kinase inhibitors. Br J Cancer 90:2250–2255

    CAS  PubMed  Google Scholar 

  18. 18.

    Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T (2005) Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol 53:35–69

    Article  PubMed  Google Scholar 

  19. 19.

    Reichert TE, Nagashima S, Kashii Y, Stanson J, Gao G, Ping Dou Q, Whiteside TL (2000) Interleukin-2 expression in human carcinoma cell lines and its roll in cell cycle progression. Oncogene 19:514–525

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Reichert TE, Watkins S, Stanson J, Johnson JT, Whiteside TL (1998) Endogenous IL-2 in cancer cells: a marker of cellular proliferation. J Histochem Cytochem 46:603–612

    CAS  PubMed  Google Scholar 

  21. 21.

    Hoffman SC, Stanley EM, Darrin Cox E, Craighead N, DiMercurio BS, Koziol DE, Harlan DM, Kirk AD, Blair PJ (2001) Association of cytokine polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated peripheral blood lymphocytes. Transplantation 72:1444–1450

    Article  Google Scholar 

  22. 22.

    Öberg K (1997) Biochemical diagnosis of neuroendocrine GEP tumor. Yale J Biol Med 70:501–508

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants number 098-0982464-2508 and 134-1342428-0491 from the Ministry of Science, Republic of Croatia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maja Cigrovski Berković.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cigrovski Berković, M., Jokić, M., Marout, J. et al. IL-2 −330 T/G SNP and serum values—potential new tumor markers in neuroendocrine tumors of the gastrointestinal tract and pancreas (GEP-NETs). J Mol Med 88, 423–429 (2010). https://doi.org/10.1007/s00109-009-0581-x

Download citation

Keywords

  • IL-2
  • Regulatory polymorphism
  • GEP-NET
  • Susceptibility
  • Tumor marker