Skip to main content
Log in

Photolytically generated nitric oxide inhibits caspase activity and results in AIF-mediated cell death

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In human skin tissue nitrite is found at relatively high concentrations and represents the main source for cutaneous non-enzymatic nitric oxide (NO) formation during UVA exposure due to photolytical decomposition. Since NO has been repeatedly shown to act pro- as well as anti-apoptotic we here studied the effects of UVA irradiation on human keratinocytes in the presence of nitrite. We show that UVA-induced nitrite photodecomposition effectively inactivated caspase activity. In parallel, we observed in human skin keratinocytes, UVA-irradiated in the presence of nitrite, a proteolytic processing of apoptosis-inducing factor (AIF) followed by translocation from the mitochondrion into the nucleus. This translocation resulted in a characteristic apoptotic nuclear phenotype, which differs from the known nuclear phenotype of caspase-mediated chromatin condensation and apoptotic body formation. Interestingly both, AIF translocation and AIF-induced nuclear phenotype changes can be inhibited by NO scavengers, demonstrating the distinct role of nitrite-derived NO in the observed processes. This mode of UVA-induced apoptosis is AIF-dependent and NO-mediated and strongly depends on the presence of nitrite, abundantly present in skin tissue. Thus, photolysis of nitrite in the skin appears to represent an important backup mechanism, which ensures removal of UVA-damaged cells even in the absence of caspase activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Berneburg M, Gattermann N, Stege H et al (1997) Chronically ultraviolet-exposed human skin shows a higher mutation frequency of mitochondrial DNA as compared to unexposed skin and the hematopoietic system. Photochem Photobiol 66:271–275

    Article  CAS  PubMed  Google Scholar 

  2. Scharffetter-Kochanek K, Wlaschek M, Brenneisen P, Schauen M, Blaudschun R, Wenk J (1997) UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biol Chem 378:1247–1257

    CAS  PubMed  Google Scholar 

  3. Weller R (2003) Nitric oxide: a key mediator in cutaneous physiology. Clin Exp Dermatol 28:511–514

    Article  CAS  PubMed  Google Scholar 

  4. Weller R (1997) Nitric oxide—a newly discovered chemical transmitter in human skin. Br J Dermatol 137:665–672

    Article  CAS  PubMed  Google Scholar 

  5. Furchgott RF (1955) The pharmacology of vascular smooth muscle. Pharmacol Rev 7:183–265

    CAS  PubMed  Google Scholar 

  6. Wood PDMB, Redmond RW (1996) The mechanism of photochemical release of nitric oxide from S-nitrosoglutathione. Photochem Photobiol 64:518–524

    Article  CAS  Google Scholar 

  7. Paunel AN, Dejam A, Thelen S et al (2005) Enzyme-independent nitric oxide formation during UVA challenge of human skin: characterization, molecular sources, and mechanisms. Free Radic Biol Med 38:606–615

    Article  CAS  PubMed  Google Scholar 

  8. Suschek CV, Briviba K, Bruch-Gerharz D, Sies H, Kroncke KD, Kolb-Bachofen V (2001) Even after UVA-exposure will nitric oxide protect cells from reactive oxygen intermediate-mediated apoptosis and necrosis. Cell Death Differ 8:515–527

    Article  CAS  PubMed  Google Scholar 

  9. Suschek CV, Schroeder P, Aust O et al (2003) The presence of nitrite during UVA irradiation protects from apoptosis. Faseb J 17:2342–2344

    CAS  PubMed  Google Scholar 

  10. Suschek CV, Krischel V, Bruch-Gerharz D et al (1999) Nitric oxide fully protects against UVA-induced apoptosis in tight correlation with Bcl-2 up-regulation. J Biol Chem 274:6130–6137

    Article  CAS  PubMed  Google Scholar 

  11. Mowbray M, McLintock S, Weerakoon R et al (2009) Enzyme-independent NO stores in human skin: quantification and influence of UV radiation. J Invest Dermatol 129:834–842

    Article  CAS  PubMed  Google Scholar 

  12. Dimmeler S, Haendeler J, Nehls M, Zeiher AM (1997) Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185:601–607

    Article  CAS  PubMed  Google Scholar 

  13. Rossig L, Fichtlscherer B, Breitschopf K et al (1999) Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 274:6823–6826

    Article  CAS  PubMed  Google Scholar 

  14. Chiodino C, Cesinaro AM, Ottani D et al (1999) Communication: expression of the novel inhibitor of apoptosis survivin in normal and neoplastic skin. J Invest Dermatol 113:415–418

    Article  CAS  PubMed  Google Scholar 

  15. Grossman D, McNiff JM, Li F, Altieri DC (1999) Expression of the apoptosis inhibitor, survivin, in nonmelanoma skin cancer and gene targeting in a keratinocyte cell line. Lab Invest 79:1121–1126

    CAS  PubMed  Google Scholar 

  16. Dimmeler S, Zeiher AM (1997) Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide. Nitric Oxide 1:275–281

    Article  CAS  PubMed  Google Scholar 

  17. Volbracht C, Chua BT, Ng CP, Bahr BA, Hong W, Li P (2005) The critical role of calpain versus caspase activation in excitotoxic injury induced by nitric oxide. J Neurochem 93:1280–1292

    Article  CAS  PubMed  Google Scholar 

  18. Baud O, Li J, Zhang Y, Neve RL, Volpe JJ, Rosenberg PA (2004) Nitric oxide-induced cell death in developing oligodendrocytes is associated with mitochondrial dysfunction and apoptosis-inducing factor translocation. Eur J Neurosci 20:1713–1726

    Article  PubMed  Google Scholar 

  19. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  CAS  PubMed  Google Scholar 

  20. Zamzami N, Susin SA, Marchetti P et al (1996) Mitochondrial control of nuclear apoptosis. J Exp Med 183:1533–1544

    Article  CAS  PubMed  Google Scholar 

  21. Susin SA, Daugas E, Ravagnan L et al (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–580

    Article  CAS  PubMed  Google Scholar 

  22. Mnaimneh S, Geffard M, Veyret B, Vincendeau P (1997) Albumin nitrosylated by activated macrophages possesses antiparasitic effects neutralized by anti-NO-acetylated-cysteine antibodies. J Immunol 158:308–314

    CAS  PubMed  Google Scholar 

  23. Mnaimneh S, Geffard M, Veyret B, Vincendeau P (1999) Detection of nitrosylated epitopes in Trypanosoma brucei gambiense by polyclonal and monoclonal anti-conjugated-NO-cysteine antibodies. C R Acad Sci III 322:311–322

    CAS  PubMed  Google Scholar 

  24. Feelisch M, Rassaf T, Mnaimneh S et al (2002) Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: implications for the fate of NO in vivo. Faseb J 16:1775–1785

    Article  CAS  PubMed  Google Scholar 

  25. Rassaf T, Bryan NS, Kelm M, Feelisch M (2002) Concomitant presence of N-nitroso and S-nitroso proteins in human plasma. Free Radic Biol Med 33:1590–1596

    Article  CAS  PubMed  Google Scholar 

  26. Yuan CQ, Li YN, Zhang XF (2004) Down-regulation of apoptosis-inducing factor protein by RNA interference inhibits UVA-induced cell death. Biochem Biophys Res Commun 317:1108–1113

    Article  CAS  PubMed  Google Scholar 

  27. Finnen MJ, Hennessy A, McLean S et al (2007) Topical application of acidified nitrite to the nail renders it antifungal and causes nitrosation of cysteine groups in the nail plate. Br J Dermatol 157:494–500

    Article  CAS  PubMed  Google Scholar 

  28. Mahotka C, Liebmann J, Wenzel M et al (2002) Differential subcellular localization of functionally divergent survivin splice variants. Cell Death Differ 9:1334–1342

    Article  CAS  PubMed  Google Scholar 

  29. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    Article  CAS  PubMed  Google Scholar 

  30. Mahotka C, Wenzel M, Springer E, Gabbert HE, Gerharz CD (1999) Survivin-deltaEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res 59:6097–6102

    CAS  PubMed  Google Scholar 

  31. Grossman D, Kim PJ, Blanc-Brude OP et al (2001) Transgenic expression of survivin in keratinocytes counteracts UVB-induced apoptosis and cooperates with loss of p53. J Clin Invest 108:991–999

    CAS  PubMed  Google Scholar 

  32. Hinds MG, Norton RS, Vaux DL, Day CL (1999) Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nat Struct Biol 6:648–651

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Active caspase-3 was kindly provided by Prof. Dr. K. Schultze-Osthoff. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG), SFB 503, project A3.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Liebmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebmann, J., Kolb-Bachofen, V., Mahotka, C. et al. Photolytically generated nitric oxide inhibits caspase activity and results in AIF-mediated cell death. J Mol Med 88, 279–287 (2010). https://doi.org/10.1007/s00109-009-0551-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0551-3

Keywords

Navigation