Skip to main content

Advertisement

Log in

Therapeutic potential of olfactory ensheathing cells in neurodegenerative diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The regenerative capacity of the olfactory system has generated interest in potential clinical application of cells from the olfactory epithelium in the treatment of neurodegenerative diseases. Experimental evidence from animal models and clinical studies suggest that transplantation of olfactory ensheathing cells (OEC), specialized glia in the olfactory system, may be therapeutically useful in neurodegenerative diseases such as spinal cord injury and stroke. This review article describes the different experimental approaches in OEC transplantation. We also discuss the possible effects of OEC implantation on the underlying pathophysiology in neurological disease, including neuroplasticity. Our recent study of this particular population of cells has disclosed some of the molecular basis of the regenerative mechanism of OECs. In summary OECs produce several neurotrophic factors such as stromal cell-derived factor 1α and brain-derived neurotrophic factor and enhance axonal regeneration to promote neuroplasticity in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

GDNF:

Glial cell line-derived neurotrophic factor

NGF:

Nerve growth factor

OB:

Olfactory bulbs

OE:

Olfactory epithelium

OEC:

Olfactory ensheathing cell

OM:

Olfactory mucosa

OSN:

Olfactory sensory neuron

PNS:

Peripheral nervous system

RMS:

Rostral migratory stream

SCI:

Spinal cord injury

SVZ:

Subventricular zone

References

  1. Yamashita H, Nakamura T, Takahashi T, Nagano Y, Hiji M, Hirabayashi T, Amano T, Yagi T, Sakai N, Kohriyama T, Matsumoto M (2006) Embryonic stem cell-derived neuron models of Parkinson's disease exhibit delayed neuronal death. J Neurochem 98:45–56

    Article  PubMed  CAS  Google Scholar 

  2. Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J NeuroSci 26:605–614

    Article  PubMed  Google Scholar 

  3. Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, Katoh H, Iwamoto Y, Nakamura M, Miyoshi H, Okano HJ, Contag CH, Toyama Y, Okano H (2005) In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J 19:1839–1841

    PubMed  CAS  Google Scholar 

  4. Takahashi K, Yasuhara T, Shingo T, Muraoka K, Kameda M, Takeuchi A, Yano A, Kurozumi K, Agari T, Miyoshi Y, Kinugasa K, Date I (2008) Embryonic neural stem cells transplanted in middle cerebral artery occlusion model of rats demonstrated potent therapeutic effects, compared to adult neural stem cells. Brain Res 1234:172–182

    Article  PubMed  CAS  Google Scholar 

  5. Hicks AU, Hewlett K, Windle V, Chernenko G, Ploughman M, Jolkkonen J, Weiss S, Corbett D (2007) Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 146:31–40

    Article  PubMed  CAS  Google Scholar 

  6. Snyder BJ, Olanow CW (2005) Stem cell treatment for Parkinson’s disease: an update for 2005. Curr Opin Neurol 18:376–385

    Article  PubMed  CAS  Google Scholar 

  7. Deumens R, Koopmans GC, Honig WM, Hamers FP, Maquet V, Jerome R, Steinbusch HW, Joosten EA (2006) Olfactory ensheathing cells, olfactory nerve fibroblasts and biomatrices to promote long-distance axon regrowth and functional recovery in the dorsally hemisected adult rat spinal cord. Exp Neurol 200:89–103

    PubMed  CAS  Google Scholar 

  8. Sasaki M, Black JA, Lankford KL, Tokuno HA, Waxman SG, Kocsis JD (2006) Molecular reconstruction of nodes of Ranvier after remyelination by transplanted olfactory ensheathing cells in the demyelinated spinal cord. J Neurosci 26:1803–1812

    Article  PubMed  CAS  Google Scholar 

  9. Woodhall E, West AK, Chuah MI (2001) Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res 88:203–213

    Article  PubMed  CAS  Google Scholar 

  10. Shyu WC, Liu DD, Lin SZ, Li WW, Su CY, Chang YC, Wang HJ, Wang HW, Tsai CH, Li H (2008) Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke. J Clin Invest 118:2482–2495

    Article  PubMed  CAS  Google Scholar 

  11. Franklin RJ, Gilson JM, Franceschini IA, Barnett SC (1996) Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia 17:217–224

    Article  PubMed  CAS  Google Scholar 

  12. Seidenfaden R, Desoeuvre A, Bosio A, Virard I, Cremer H (2006) Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci 32:187–198

    Article  PubMed  CAS  Google Scholar 

  13. Raisman G (1985) Specialized neuroglial arrangement may explain the capacity of vomeronasal axons to reinnervate central neurons. Neuroscience 14:237–254

    Article  PubMed  CAS  Google Scholar 

  14. Ramon-Cueto A, Valverde F (1995) Olfactory bulb ensheathing glia: a unique cell type with axonal growth-promoting properties. Glia 14:163–173

    Article  PubMed  CAS  Google Scholar 

  15. Harding J, Graziadei PP, Monti Graziadei GA, Margolis FL (1977) Denervation in the primary olfactory pathway of mice. IV. Biochemical and morphological evidence for neuronal replacement following nerve section. Brain Res 132:11–28

    Article  PubMed  CAS  Google Scholar 

  16. Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat Rec 269:33–49

    Article  PubMed  Google Scholar 

  17. Carr VM, Walters E, Margolis FL, Farbman AI (1998) An enhanced olfactory marker protein immunoreactivity in individual olfactory receptor neurons following olfactory bulbectomy may be related to increased neurogenesis. J Neurobiol 34:377–390

    Article  PubMed  CAS  Google Scholar 

  18. Sammeta N, Yu TT, Bose SC, McClintock TS (2007) Mouse olfactory sensory neurons express 10,000 genes. J Comp Neurol 502:1138–1156

    Article  PubMed  CAS  Google Scholar 

  19. Iwema CL, Schwob JE (2003) Odorant receptor expression as a function of neuronal maturity in the adult rodent olfactory system. J Comp Neurol 459:209–222

    Article  PubMed  CAS  Google Scholar 

  20. Lee VM, Pixley SK (1994) Age and differentiation-related differences in neuron-specific tubulin immunostaining of olfactory sensory neurons. Brain Res Dev Brain Res 83:209–215

    Article  PubMed  CAS  Google Scholar 

  21. Jang W, Youngentob SL, Schwob JE (2003) Globose basal cells are required for reconstitution of olfactory epithelium after methyl bromide lesion. J Comp Neurol 460:123–140

    Article  PubMed  Google Scholar 

  22. Leung CT, Coulombe PA, Reed RR (2007) Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci 10:720–726

    Article  PubMed  CAS  Google Scholar 

  23. Roisen FJ, Klueber KM, Lu CL, Hatcher LM, Dozier A, Shields CB, Maguire S (2001) Human adult olfactory stem cells. Brain Res 890:11–22

    Article  PubMed  CAS  Google Scholar 

  24. Winstead W, Marshall C, Lu L, Klueber KM, Roisen FJ (2005) Endoscopic biopsy of human olfactory epithelium as a source of viable neural stem cells. Am J Rhinol 19:83–90

    PubMed  Google Scholar 

  25. Chuah MI, Au C (1993) Cultures of ensheathing cells from neonatal rat olfactory bulbs. Brain Res 601:213–220

    Article  PubMed  CAS  Google Scholar 

  26. Ramon-Cueto A, Plant GW, Avila J, Bunge MB (1998) Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 18:3803–3815

    PubMed  CAS  Google Scholar 

  27. Doucette R (1990) Glial influences on axonal growth in the primary olfactory system. Glia 3:433–449

    Article  PubMed  CAS  Google Scholar 

  28. Fraher JP (1997) Axon–glial relationships in early CNS–PNS transitional zone development: an ultrastructural study. J Neurocytol 26:41–52

    Article  PubMed  CAS  Google Scholar 

  29. Fraher JP (2000) The transitional zone and CNS regeneration. J Anat 196(Pt 1):137–158

    PubMed  Google Scholar 

  30. Au WW, Treloar HB, Greer CA (2002) Sublaminar organization of the mouse olfactory bulb nerve layer. J Comp Neurol 446:68–80

    Article  PubMed  Google Scholar 

  31. Au E, Roskams AJ (2003) Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia 41:224–236

    Article  PubMed  Google Scholar 

  32. Richter MW, Fletcher PA, Liu J, Tetzlaff W, Roskams AJ (2005) Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord. J Neurosci 25:10700–10711

    Article  PubMed  CAS  Google Scholar 

  33. Thompson RJ, Roberts B, Alexander CL, Williams SK, Barnett SC (2000) Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. J Neurosci Res 61:172–185

    Article  PubMed  CAS  Google Scholar 

  34. Vincent AJ, Taylor JM, Choi-Lundberg DL, West AK, Chuah MI (2005) Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. Glia 51:132–147

    Article  PubMed  Google Scholar 

  35. Cao L, Zhu YL, Su Z, Lv B, Huang Z, Mu L, He C (2007) Olfactory ensheathing cells promote migration of Schwann cells by secreted nerve growth factor. Glia 55:897–904

    Article  PubMed  Google Scholar 

  36. Wewetzer K, Kern N, Ebel C, Radtke C, Brandes G (2005) Phagocytosis of O4+ axonal fragments in vitro by p75-neonatal rat olfactory ensheathing cells. Glia 49:577–587

    Article  PubMed  Google Scholar 

  37. Tisay KT, Bartlett PF, Key B (2000) Primary olfactory axons form ectopic glomeruli in mice lacking p75NTR. J Comp Neurol 428:656–670

    Article  PubMed  CAS  Google Scholar 

  38. Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, Geraghty T, Mackay-Sim A (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128:2951–2960

    Article  PubMed  CAS  Google Scholar 

  39. Huang H, Chen L, Wang H, Xiu B, Li B, Wang R, Zhang J, Zhang F, Gu Z, Li Y, Song Y, Hao W, Pang S, Sun J (2003) Influence of patients' age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 116:1488–1491

    Google Scholar 

  40. Moreno-Flores MT, Martin BM, Avila J, Wandosell JF, Diaz NJ (2005) Reversibly immortalized olfactory ensheathing glia and their use to promote neuronal regeneration. Int Pat NoWO 2005/0125513 (A1)

  41. Vincent AJ, West AK, Chuah MI (2005) Morphological and functional plasticity of olfactory ensheathing cells. J Neurocytol 34:65–80

    Article  PubMed  Google Scholar 

  42. van den Pol AN, Santarelli JG (2003) Olfactory ensheathing cells: time lapse imaging of cellular interactions, axonal support, rapid morphologic shifts, and mitosis. J Comp Neurol 458:175–194

    Article  PubMed  Google Scholar 

  43. Deng C, Gorrie C, Hayward I, Elston B, Venn M, Mackay-Sim A, Waite P (2006) Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord. J Neurosci Res 83:1201–1212

    Article  PubMed  CAS  Google Scholar 

  44. Windus LC, Claxton C, Allen CL, Key B, St John JA (2007) Motile membrane protrusions regulate cell-cell adhesion and migration of olfactory ensheathing glia. Glia 55:1708–1719

    Article  PubMed  Google Scholar 

  45. Devon R, Doucette R (1992) Olfactory ensheathing cells myelinate dorsal root ganglion neurites. Brain Res 589:175–179

    Article  PubMed  CAS  Google Scholar 

  46. Imaizumi T, Lankford KL, Waxman SG, Greer CA, Kocsis JD (1998) Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J Neurosci 18:6176–6185

    PubMed  CAS  Google Scholar 

  47. Kato T, Honmou O, Uede T, Hashi K, Kocsis JD (2000) Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. Glia 30:209–218

    Article  PubMed  CAS  Google Scholar 

  48. De Mello TR, Busfield S, Dunlop SA, Plant GW (2007) Culture conditions affect proliferative responsiveness of olfactory ensheathing glia to neuregulins. Glia 55:734–745

    Article  PubMed  Google Scholar 

  49. Nave KA, Salzer JL (2006) Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 16:492–500

    Article  PubMed  CAS  Google Scholar 

  50. Williams SK, Franklin RJ, Barnett SC (2004) Response of olfactory ensheathing cells to the degeneration and regeneration of the peripheral olfactory system and the involvement of the neuregulins. J Comp Neurol 470:50–62

    Article  PubMed  CAS  Google Scholar 

  51. Barnett SC, Roskams AJ (2002) Olfactory ensheathing cells. Isolation and culture from the rat olfactory bulb. Methods Mol Biol 198:41–48

    PubMed  Google Scholar 

  52. Barnett SC, Hutchins AM, Noble M (1993) Purification of olfactory nerve ensheathing cells from the olfactory bulb. Dev Biol 155:337–350

    Article  PubMed  CAS  Google Scholar 

  53. Gudino-Cabrera G, Nieto-Sampedro M (2000) Schwann-like macroglia in adult rat brain. Glia 30:49–63

    Article  PubMed  CAS  Google Scholar 

  54. Lopez-Vales R, Fores J, Navarro X, Verdu E (2006) Olfactory ensheathing glia graft in combination with FK506 administration promote repair after spinal cord injury. Neurobiol Dis 24:443–454

    Article  PubMed  CAS  Google Scholar 

  55. Verdu E, Garcia-Alias G, Fores J, Lopez-Vales R, Navarro X (2003) Olfactory ensheathing cells transplanted in lesioned spinal cord prevent loss of spinal cord parenchyma and promote functional recovery. Glia 42:275–286

    Article  PubMed  Google Scholar 

  56. Pearse DD, Marcillo AE, Oudega M, Lynch MP, Wood PM, Bunge MB (2004) Transplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury: does pretreatment with methylprednisolone and interleukin-10 enhance recovery? J Neurotrauma 21:1223–1239. doi:10.1089/neu.2004.21.1223

    Article  PubMed  Google Scholar 

  57. Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev, Neurosci 4:703–713

    Article  CAS  Google Scholar 

  58. Schwob JE, Youngentob SL, Ring G, Iwema CL, Mezza RC (1999) Reinnervation of the rat olfactory bulb after methyl bromide-induced lesion: timing and extent of reinnervation. J Comp Neurol 412:439–457

    Article  PubMed  CAS  Google Scholar 

  59. Graziadei PP, Levine RR, Monti Graziadei GA (1979) Plasticity of connections of the olfactory sensory neuron: regeneration into the forebrain following bulbectomy in the neonatal mouse. Neuroscience 4:713–727

    Article  PubMed  CAS  Google Scholar 

  60. Barnett SC, Alexander CL, Iwashita Y, Gilson JM, Crowther J, Clark L, Dunn LT, Papanastassiou V, Kennedy PG, Franklin RJ (2000) Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 123(Pt 8):1581–1588

    Article  PubMed  Google Scholar 

  61. Li Y, Field PM, Raisman G (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277:2000–2002

    Article  PubMed  CAS  Google Scholar 

  62. Bretzner F, Liu J, Currie E, Roskams AJ, Tetzlaff W (2008) Undesired effects of a combinatorial treatment for spinal cord injury—transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus. Eur J NeuroSci 28:1795–1807

    Article  PubMed  Google Scholar 

  63. Chuah MI, Choi-Lundberg D, Weston S, Vincent AJ, Chung RS, Vickers JC, West AK (2004) Olfactory ensheathing cells promote collateral axonal branching in the injured adult rat spinal cord. Exp Neurol 185:15–25

    Article  PubMed  CAS  Google Scholar 

  64. Agrawal AK, Shukla S, Chaturvedi RK, Seth K, Srivastava N, Ahmad A, Seth PK (2004) Olfactory ensheathing cell transplantation restores functional deficits in rat model of Parkinson's disease: a cotransplantation approach with fetal ventral mesencephalic cells. Neurobiol Dis 16:516–526

    Article  PubMed  CAS  Google Scholar 

  65. Smith PM, Lakatos A, Barnett SC, Jeffery ND, Franklin RJ (2002) Cryopreserved cells isolated from the adult canine olfactory bulb are capable of extensive remyelination following transplantation into the adult rat CNS. Exp Neurol 176:402–406

    Article  PubMed  CAS  Google Scholar 

  66. Bock P, Beineke A, Techangamsuwan S, Baumgartner W, Wewetzer K (2007) Differential expression of HNK-1 and p75(NTR) in adult canine Schwann cells and olfactory ensheathing cells in situ but not in vitro. J Comp Neurol 505:572–585

    Article  PubMed  Google Scholar 

  67. Lu J, Feron F, Ho SM, Mackay-Sim A, Waite PM (2001) Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Res 889:344–357

    Article  PubMed  CAS  Google Scholar 

  68. Ramer LM, Au E, Richter MW, Liu J, Tetzlaff W, Roskams AJ (2004) Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. J Comp Neurol 473:1–15

    Article  PubMed  Google Scholar 

  69. Dewar D, Bentley D, Barnett SC (2007) Implantation of pure cultured olfactory ensheathing cells in an animal model of parkinsonism. Acta Neurochir (Wien) 149:407–414

    Article  CAS  Google Scholar 

  70. Radtke C, Aizer AA, Agulian SK, Lankford KL, Vogt PM, Kocsis JD (2009) Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair. Brain Res 1254:10–17

    Article  PubMed  CAS  Google Scholar 

  71. Mackay-Sim A, Féron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, Fronek P, Gray C, Kerr G, Licina P, Nowitzke A, Perry C, Silburn PA, Urquhart S, Geraghty T (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 131:2376–2386

    Article  PubMed  CAS  Google Scholar 

  72. Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29:191–203

    PubMed  Google Scholar 

  73. Huang H, Chen L, Xi H, Wang H, Zhang J, Zhang F, Liu Y (2008) Fetal olfactory ensheathing cells transplantation in amyotrophic lateral sclerosis patients: a controlled pilot study. Clin Transplant 22:710–718

    PubMed  Google Scholar 

  74. Morita E, Watanabe Y, Ishimoto M, Nakano T, Kitayama M, Yasui K, Fukada Y, Doi K, Karunaratne A, Murrell WG, Sutharsan R, Mackay-Sim A, Hata Y, Nakashima K (2008) A novel cell transplantation protocol and its application to an ALS mouse model. Exp Neurol 213:431–438

    Article  PubMed  CAS  Google Scholar 

  75. Hansel DE, Eipper BA, Ronnett GV (2001) Regulation of olfactory neurogenesis by amidated neuropeptides. J Neurosci Res 66:1–7

    Article  PubMed  CAS  Google Scholar 

  76. Kumar R, Hayat S, Felts P, Bunting S, Wigley C (2005) Functional differences and interactions between phenotypic subpopulations of olfactory ensheathing cells in promoting CNS axonal regeneration. Glia 50:12–20

    Article  PubMed  Google Scholar 

  77. Buckland ME, Cunningham AM (1999) Alterations in expression of the neurotrophic factors glial cell line-derived neurotrophic factor, ciliary neurotrophic factor and brain-derived neurotrophic factor, in the target-deprived olfactory neuroepithelium. Neuroscience 90:333–347

    Article  PubMed  CAS  Google Scholar 

  78. Wang B, Han J, Gao Y, Xiao Z, Chen B, Wang X, Zhao W, Dai J (2007) The differentiation of rat adipose-derived stem cells into OEC-like cells on collagen scaffolds by co-culturing with OECs. Neurosci Lett 421:191–196

    Article  PubMed  CAS  Google Scholar 

  79. Lipson AC, Widenfalk J, Lindqvist E, Ebendal T, Olson L (2003) Neurotrophic properties of olfactory ensheathing glia. Exp Neurol 180:167–171

    Article  PubMed  Google Scholar 

  80. Cao L, Su Z, Zhou Q, Lv B, Liu X, Jiao L, Li Z, Zhu Y, Huang Z, Huang A, He C (2006) Glial cell line-derived neurotrophic factor promotes olfactory ensheathing cells migration. Glia 54:536–544

    Article  PubMed  Google Scholar 

  81. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner ML, Araki T, Johnson EM Jr, Milbrandt J (1998) Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 21:1291–1302

    Article  PubMed  CAS  Google Scholar 

  82. Barde YA (1994) Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res 390:45–56

    PubMed  CAS  Google Scholar 

  83. DeChiara TM, Vejsada R, Poueymirou WT, Acheson A, Suri C, Conover JC, Friedman B, McClain J, Pan L, Stahl N, Ip NY, Yancopoulos GD (1995) Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83:313–322

    Article  PubMed  CAS  Google Scholar 

  84. Ebendal T, Tomac A, Hoffer BJ, Olson L (1995) Glial cell line-derived neurotrophic factor stimulates fiber formation and survival in cultured neurons from peripheral autonomic ganglia. J Neurosci Res 40:276–284

    Article  PubMed  CAS  Google Scholar 

  85. Cao L, Liu L, Chen ZY, Wang LM, Ye JL, Qiu HY, Lu CL, He C (2004) Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Brain 127:535–549

    Article  PubMed  Google Scholar 

  86. Harper GP, Barde YA, Edgar D, Ganten D, Hefti F, Heumann R, Naujoks KW, Rohrer H, Turner JE, Thoenen H (1983) Biological and immunological properties of the nerve growth factor from bovine seminal plasma: comparison with the properties of mouse nerve growth factor. Neuroscience 8:375–387

    Article  PubMed  CAS  Google Scholar 

  87. Cao X, Shoichet MS (2001) Defining the concentration gradient of nerve growth factor for guided neurite outgrowth. Neuroscience 103:831–840

    Article  PubMed  CAS  Google Scholar 

  88. Vawter MP, Basaric-Keys J, Li Y, Lester DS, Lebovics RS, Lesch KP, Kulaga H, Freed WJ, Sunderland T, Wolozin B (1996) Human olfactory neuroepithelial cells: tyrosine phosphorylation and process extension are increased by the combination of IL-1beta, IL-6, NGF, and bFGF. Exp Neurol 142:179–194

    Article  PubMed  CAS  Google Scholar 

  89. Franssen EH, De Bree FM, Essing AH, Ramon-Cueto A, Verhaagen J (2008) Comparative gene expression profiling of olfactory ensheathing glia and Schwann cells indicates distinct tissue repair characteristics of olfactory ensheathing glia. Glia 56:1285–1298

    Article  PubMed  Google Scholar 

  90. Mahanthappa NK, Cooper DN, Barondes SH, Schwarting GA (1994) Rat olfactory neurons can utilize the endogenous lectin, L-14, in a novel adhesion mechanism. Development 120:1373–1384

    PubMed  CAS  Google Scholar 

  91. Vukovic J, Ruitenberg MJ, Roet K, Franssen E, Arulpragasam A, Sasaki T, Verhaagen J, Harvey AR, Busfield SJ, Plant GW (2009) The glycoprotein fibulin-3 regulates morphology and motility of olfactory ensheathing cells in vitro. Glia 57:424–443

    Article  PubMed  Google Scholar 

  92. Au E, Richter MW, Vincent AJ, Tetzlaff W, Aebersold R, Sage EH, Roskams AJ (2007) SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair. J Neurosci 27:7208–7221

    Article  PubMed  CAS  Google Scholar 

  93. Teare KA, Pearson RG, Shakesheff KM, Raisman G, Haycock JW (2003) Alpha-MSH inhibits inflammatory signalling in olfactory ensheathing cells. NeuroReport 14:2171–2175

    Article  PubMed  CAS  Google Scholar 

  94. Vincent AJ, Choi-Lundberg DL, Harris JA, West AK, Chuah MI (2007) Bacteria and PAMPs activate nuclear factor kappaB and Gro production in a subset of olfactory ensheathing cells and astrocytes but not in Schwann cells. Glia 55:905–916

    Article  PubMed  Google Scholar 

  95. Franklin RJ, Barnett SC (1997) Do olfactory glia have advantages over Schwann cells for CNS repair? J Neurosci Res 50:665–672

    Article  PubMed  CAS  Google Scholar 

  96. Gudino-Cabrera G, Pastor AM, de la Cruz RR, Delgado-Garcia JM, Nieto-Sampedro M (2000) Limits to the capacity of transplants of olfactory glia to promote axonal regrowth in the CNS. NeuroReport 11:467–471

    Article  PubMed  CAS  Google Scholar 

  97. Yan H, Lu D, Rivkees SA (2003) Lysophosphatidic acid regulates the proliferation and migration of olfactory ensheathing cells in vitro. Glia 44:26–36

    Article  PubMed  Google Scholar 

  98. Bang AG, Goulding MD (1996) Regulation of vertebrate neural cell fate by transcription factors. Curr Opin Neurobiol 6:25–32

    Article  PubMed  CAS  Google Scholar 

  99. Temple S, Alvarez-Buylla A (1999) Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol 9:135–141

    Article  PubMed  CAS  Google Scholar 

  100. Ma Q, Sommer L, Cserjesi P, Anderson DJ (1997) Mash1 and neurogenin1 expression patterns define complementary domains of neuroepithelium in the developing CNS and are correlated with regions expressing notch ligands. J Neurosci 17:3644–3652

    PubMed  CAS  Google Scholar 

  101. Guillemot F (1999) Vertebrate bHLH genes and the determination of neuronal fates. Exp Cell Res 253:357–364

    Article  PubMed  CAS  Google Scholar 

  102. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, Li H (2004) Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110:1847–1854

    Article  PubMed  CAS  Google Scholar 

  103. Mackay-Sima A, Chuahb MI (2000) Neurotrophic factors in the primary olfactory pathway. Prog Neurobiol 62:527–559

    Article  PubMed  CAS  Google Scholar 

  104. Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, Maeda M, Fagan SC, Carroll JE, Conway SJ (2004) SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63:84–96

    PubMed  CAS  Google Scholar 

  105. Zheng J, Thylin MR, Ghorpade A, Xiong H, Persidsky Y, Cotter R, Niemann D, Che M, Zeng YC, Gelbard HA, Shepard RB, Swartz JM, Gendelman HE (1999) Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol 98:185–200

    Article  PubMed  CAS  Google Scholar 

  106. Evert BO, Vogt IR, Kindermann C, Ozimek L, de Vos RA, Brunt ER, Schmitt I, Klockgether T, Wullner U (2001) Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J Neurosci 21:5389–5396

    PubMed  CAS  Google Scholar 

  107. Arakawa Y, Bito H, Furuyashiki T, Tsuji T, Takemoto-Kimura S, Kimura K, Nozaki K, Hashimoto N, Narumiya S (2003) Control of axon elongation via an SDF-1alpha/Rho/mDia pathway in cultured cerebellar granule neurons. J Cell Biol 161:381–391

    Article  PubMed  CAS  Google Scholar 

  108. Salès N, Hässig R, Rodolfo K, Di Giamberardino L, Traiffort E, Ruat M, Frétier P, Moya KL (2002) Developmental expression of the cellular prion protein in elongating axons. Eur J NeuroSci 15:1163–1177

    Article  PubMed  Google Scholar 

  109. Salès N, Rodolfo K, Hässig R, Faucheux B, Di Giamberardino L, Moya KL (1998) Cellular prion protein localization in rodent and primate brain. Eur J NeuroSci 10:2464–2471

    Article  PubMed  Google Scholar 

  110. Büeler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347

    Article  PubMed  Google Scholar 

  111. Roucou X, Gains M, LeBlanc AC (2004) Neuroprotective functions of prion protein. J Neurosci Res 75:153–161

    Article  PubMed  CAS  Google Scholar 

  112. Graner E, Mercadante AF, Zanata SM, Forlenza OV, Cabral AL, Veiga SS, Juliano MA, Roesler R, Walz R, Minetti A, Izquierdo I, Martins VR, Brentani RR (2000) Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res 76:85–92

    Article  PubMed  CAS  Google Scholar 

  113. Schmitt-Ulms G, Hansen K, Liu J, Cowdrey C, Yang J, DeArmond SJ, Cohen FE, Prusiner SB, Baldwin MA (2004) Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nat Biotechnol 22:724–731

    Article  PubMed  CAS  Google Scholar 

  114. Graner E, Mercadante AF, Zanata SM, Martins VR, Jay DG, Brentani RR (2000) Laminin-induced PC-12 cell differentiation is inhibited following laser inactivation of cellular prion protein. FEBS Lett 482:257–260

    Article  PubMed  CAS  Google Scholar 

  115. Gauczynski S, Peyrin JM, Haïk S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmézas CI, Weiss S (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 20:5863–5875

    Article  PubMed  CAS  Google Scholar 

  116. Rieger R, Edenhofer F, Lasmézas CI, Weiss S (1997) The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 3:1383–1388

    Article  PubMed  CAS  Google Scholar 

  117. Le Y, Yang Y, Cui Y, Yazawa H, Gong W, Qiu C, Wang JM (2002) Receptors for chemotactic formyl peptides as pharmacological targets. Int Immunopharmacol 2:1–13

    Article  PubMed  CAS  Google Scholar 

  118. Beites CL, Kawauchi S, Crocker CE, Calof AL (2005) Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res 306:309–316

    Article  PubMed  CAS  Google Scholar 

  119. Ramon-Cueto A, Cordero MI, Santos-Benito FF, Avila J (2000) Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25:425–435

    Article  PubMed  CAS  Google Scholar 

  120. Deumens R, Koopmans GC, Lemmens M, Mollers S, Honig WM, Steinbusch HW, Brook G, Joosten EA (2006) Neurite outgrowth promoting effects of enriched and mixed OEC/ONF cultures. Neurosci Lett 397:20–24

    Article  PubMed  CAS  Google Scholar 

  121. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, Ben-Hur H, Lapidot T, Alon R (1999) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J Clin Invest 104:1199–1211

    Article  PubMed  CAS  Google Scholar 

  122. Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J, Hollt V, Schulz S (2002) A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci 22:5865–5878

    PubMed  CAS  Google Scholar 

  123. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    Article  PubMed  CAS  Google Scholar 

  124. Ying QL, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416:545–548

    Article  PubMed  CAS  Google Scholar 

  125. Zhang S, Shpall E, Willerson JT, Yeh ET (2007) Fusion of human hematopoietic progenitor cells and murine cardiomyocytes is mediated by alpha 4 beta 1 integrin/vascular cell adhesion molecule-1 interaction. Circ Res 100:693–702

    Article  PubMed  CAS  Google Scholar 

  126. Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci U S A 100(Suppl 1):11917–11923

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Ted Weita Lai of University of British Columbia, Canada for his critical reading of this manuscript. This work was supported in part by research grants from the Chen-Han Foundation for Education, the National Science Council, Taiwan (NSC97-2314-B-039-036-MY3 and NSC97-2314-B-039-001-MY2), China Medical University, Taiwan (CMU 97-228), and China Medical University Hospital, Taiwan (DMR-97-143).

Disclosure of potential conflict of interests

The authors declare that they have no conflicting interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demeral David Liu.

Additional information

Shao-Chih Chiu, Huey-Shan Hung, Shinn-Zong Lin, and Esheral Chiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, SC., Hung, HS., Lin, SZ. et al. Therapeutic potential of olfactory ensheathing cells in neurodegenerative diseases. J Mol Med 87, 1179–1189 (2009). https://doi.org/10.1007/s00109-009-0528-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0528-2

Keywords

Navigation