Skip to main content

Advertisement

Log in

NF-κB blockade upregulates Bax, TSP-1, and TSP-2 expression in rat granulation tissue

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Several diseases are characterized by chronic inflammation, a condition frequently associated with angiogenesis and fibrogenesis that account for the development of granulation tissue. Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a crucial modulator of intracellular prosurvival signaling pathways and is implicated in the pathogenesis of inflammatory process. In this study, we have investigated the role of NF-κB in the angiogenic and fibrogenic response induced by λ-carrageenin in a rat model of chronic inflammation at 1, 3, and 5 days. The subcutaneous implant of λ-carrageenin-soaked sponges in rat induced a time-related increase of granulation tissue formation accompanied by intense neovascularization. These λ-carrageenin-induced changes were significantly reduced by coinjection of wild-type oligodeoxynucleotide (WT ODN) decoy to NF-κB. Molecular, morphological, and ultrastructural analysis performed on whole granulation tissue demonstrated: (1) inhibition of NF-κB/DNA binding activity; (2) downregulation of cyclooxygenase-2, matrix metalloproteinase-9, tumor necrosis factor-α, and vascular endothelial growth factor; (3) upregulation of thrombospondin (TSP)-1 at 1 day and TSP-2 at 5 days; and (4) increase in Bax to Bcl-2 ratio. Our findings show that the blockade of NF-κB activation by WT ODN decoy prevents the development of granulation tissue induced by λ-carrageenin-soaked sponge implant upregulating Bax as well as TSP-1 and TSP-2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jackson JR, Bolognese B, Kircher CH, Marshall LA, Winkler JD (1997) Modulation of angiogenesis in a model of chronic inflammation. Inflamm Res 46(Suppl 2):S129–S130

    Article  CAS  PubMed  Google Scholar 

  2. Majno G (1998) Chronic inflammation: links with angiogenesis and wound healing. Am J Pathol 153:1035–1039

    CAS  PubMed  Google Scholar 

  3. Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377

    Article  CAS  PubMed  Google Scholar 

  4. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22:201–207

    Article  CAS  PubMed  Google Scholar 

  5. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  6. Ghosh AK, Hirasawa N, Niki H, Ohuchi K (2000) Cyclooxygenase-2-mediated angiogenesis in carrageenin-induced granulation tissue in rats. J Pharmacol Exp Ther 295:802–809

    CAS  PubMed  Google Scholar 

  7. Bornstein P, Armstrong LC, Hankenson KD, Kyriakides TR, Yang Z (2000) Thrombospondin 2, a matricellular protein with diverse functions. Matrix Biol 19:557–568

    Article  CAS  PubMed  Google Scholar 

  8. Streit M, Velasco P, Riccardi L, Spencer L, Brown LF, Janes L, Lange-Asschenfeldt B, Yano K, Hawighorst T, Iruela-Arispe L, Detmar M (2000) Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J 19:3272–3282

    Article  CAS  PubMed  Google Scholar 

  9. Park YW, Kang YM, Butterfield J, Detmar M, Goronzy JJ, Weyand CM (2004) Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in rheumatoid arthritis. Am J Pathol 165:2087–2098

    CAS  PubMed  Google Scholar 

  10. Nör JE, Peters MC, Christensen JB, Sutorik MM, Linn S, Khan MK, Addison CL, Mooney DJ, Polverini PJ (2000) Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 37:209–218

    Article  PubMed  Google Scholar 

  11. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  12. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11

    Article  CAS  PubMed  Google Scholar 

  13. Farina AR, Tacconelli A, Vacca A, Maroder M, Gulino A, Mackay AR (1999) Transcriptional up-regulation of matrix metalloproteinase-9 expression during spontaneous epithelial to neuroblast phenotype conversion by SK-N-SH neuroblastoma cells, involved in enhanced invasivity, depends upon GT-box and nuclear factor kappaB elements. Cell Growth Differ 10:353–367

    CAS  PubMed  Google Scholar 

  14. Sid B, Sartelet H, Bellon G, El Btaouri H, Rath G, Delorme N, Haye B, Martiny L (2004) Thrombospondin 1: a multifunctional protein implicated in the regulation of tumor growth. Crit Rev Oncol Hematol 49:245–258

    Article  CAS  PubMed  Google Scholar 

  15. Yang YL, Chuang LY, Guh JY, Liu SF, Hung MY, Liao TN, Huang YL (2004) Thrombospondin-1 mediates distal tubule hypertrophy induced by glycated albumin. Biochem J 379:89–97

    Article  CAS  PubMed  Google Scholar 

  16. Lin B, Williams-Skipp C, Tao Y, Schleicher MS, Cano LL, Duke RC, Scheinman RI (1999) NF-kappaB functions as both a proapoptotic and antiapoptotic regulatory factor within a single cell type. Cell Death Differ 6:570–582

    Article  CAS  PubMed  Google Scholar 

  17. Radhakrishnan SK, Kamalakaran S (2006) Pro-apoptotic role of NF-kappaB: implications for cancer therapy. Biochim Biophys Acta 1766:53–62

    CAS  PubMed  Google Scholar 

  18. Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274:782–784

    Article  CAS  PubMed  Google Scholar 

  19. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274:787–789

    Article  PubMed  Google Scholar 

  20. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683

    Article  CAS  PubMed  Google Scholar 

  21. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414:308–313

    Article  PubMed  Google Scholar 

  22. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227

    Article  CAS  PubMed  Google Scholar 

  23. D’Acquisto F, de Cristofaro F, Maiuri MC, Tajana G, Carnuccio R (2001) Protective role of nuclear factor kappa B against nitric oxide-induced apoptosis in J774 macrophages. Cell Death Differ 8:144–151

    Article  PubMed  Google Scholar 

  24. Fujihara S, Ward C, Dransfield I, Hay RT, Uings IJ, Hayes B, Farrow SN, Haslett C, Rossi AG (2002) Inhibition of nuclear factor-kappaB activation un-masks the ability of TNF-alpha to induce human eosinophil apoptosis. Eur J Immunol 32:457–466

    Article  CAS  PubMed  Google Scholar 

  25. Ward C, Chilvers ER, Lawson MF, Pryde JG, Fujihara S, Farrow SN, Haslett C, Rossi AG (1999) NF-kappaB activation is a critical regulator of human granulocyte apoptosis in vitro. J Biol Chem 274:4309–4318

    Article  CAS  PubMed  Google Scholar 

  26. Wu M, Lee H, Bellas RE, Schauer SL, Arsura M, Katz D, FitzGerald MJ, Rothstein TL, Sherr DH, Sonenshein GE (1996) Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. EMBO J 15:4682–4690

    CAS  PubMed  Google Scholar 

  27. Maiuri MC, Tajana G, Iuvone T, De Stefano D, Mele G, Ribecco MT, Cinelli MP, Romano MF, Turco MC, Carnuccio R (2004) Nuclear factor-kappaB regulates inflammatory cell apoptosis and phagocytosis in rat carrageenin-sponge implant model. Am J Pathol 165:115–126

    CAS  PubMed  Google Scholar 

  28. Iuvone T, Carnuccio R, Di Rosa M (1994) Modulation of granuloma formation by endogenous nitric oxide. Eur J Pharmacol 265:89–92

    Article  CAS  PubMed  Google Scholar 

  29. De Filippis D, Russo A, De Stefano D, Maiuri MC, Esposito G, Cinelli MP, Pietropaolo C, Carnuccio R, Russo G, Iuvone T (2007) Local administration of WIN 55,212-2 reduces chronic granuloma-associated angiogenesis in rat by inhibiting NF-kappaB activation. J Mol Med 85:635–645

    Article  PubMed  Google Scholar 

  30. Muramatsu M, Katada J, Hayashi I, Majima M (2000) Chymase as a proangiogenic factor. A possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model. J Biol Chem 275:5545–5552

    Article  CAS  PubMed  Google Scholar 

  31. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621

    Article  CAS  PubMed  Google Scholar 

  32. Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117:1175–1183

    Article  CAS  PubMed  Google Scholar 

  33. Tan TT, Coussens LM (2007) Humoral immunity, inflammation and cancer. Curr Opin Immunol 19:209–216

    Article  CAS  PubMed  Google Scholar 

  34. Meneghin A, Hogaboam CM (2007) Infectious disease, the innate immune response, and fibrosis. J Clin Invest 117:530–538

    Article  CAS  PubMed  Google Scholar 

  35. Savill J (1997) Apoptosis in resolution of inflammation. J Leukoc Biol 61:375–380

    CAS  PubMed  Google Scholar 

  36. Matsuyama W, Watanabe M, Shirahama Y, Mitsuyama H, Higashimoto I, Osame M, Arimura K (2006) Discoidin domain receptor 1 contributes to the survival of lung fibroblast in idiopathic pulmonary fibrosis. Am J Pathol 168:866–877

    Article  CAS  PubMed  Google Scholar 

  37. Bentires-Alj M, Dejardin E, Viatour P, Van Lint C, Froesch B, Reed JC, Merville MP, Bours V (2001) Inhibition of the NF-kappa B transcription factor increases Bax expression in cancer cell lines. Oncogene 20:2805–2813

    Article  CAS  PubMed  Google Scholar 

  38. Feuillard J, Schuhmacher M, Kohanna S, Asso-Bonnet M, Ledeur F, Joubert-Caron R, Bissieres P, Polack A, Bornkamm GW, Raphael M (2000) Inducible loss of NF-kappaB activity is associated with apoptosis and Bcl-2 down-regulation in Epstein-Barr virus-transformed B lymphocytes. Blood 95:2068–2075

    CAS  PubMed  Google Scholar 

  39. Grossmann M, O’Reilly LA, Gugasyan R, Strasser A, Adams JM, Gerondakis S (2000) The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J 19:6351–6360

    Article  CAS  PubMed  Google Scholar 

  40. Dikshit P, Chatterjee M, Goswami A, Mishra A, Jana NR (2006) Aspirin induces apoptosis through the inhibition of proteasome function. J Biol Chem 281:29228–29235

    Article  CAS  PubMed  Google Scholar 

  41. Agah A, Kyriakides TR, Letrondo N, Bjorkblom B, Bornstein P (2004) Thrombospondin 2 levels are increased in aged mice: consequences for cutaneous wound healing and angiogenesis. Matrix Biol 22:539–547

    Article  CAS  PubMed  Google Scholar 

  42. Agah A, Kyriakides TR, Lawler J, Bornstein P (2002) The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am J Pathol 161:831–839

    CAS  PubMed  Google Scholar 

  43. Cinatl J Jr, Bittoova M, Margraf S, Vogel JU, Cinatl J, Preiser W, Doerr HW (2000) Cytomegalovirus infection decreases expression of thrombospondin-1 and -2 in cultured human retinal glial cells: effects of antiviral agents. J Infect Dis 182:643–651

    Article  CAS  PubMed  Google Scholar 

  44. Kuprash DV, Udalova IA, Turetskaya RL, Rice NR, Nedospasov SA (1995) Conserved kappa B element located downstream of the tumor necrosis factor alpha gene: distinct NF-kappa B binding pattern and enhancer activity in LPS activated murine macrophages. Oncogene 11:97–106

    CAS  PubMed  Google Scholar 

  45. Schmedtje JF, Ji YS, Liu WL, DuBois RN, Runge MS (1997) Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. J Biol Chem 272:601–608

    Article  CAS  PubMed  Google Scholar 

  46. Huang WC, Chan ST, Yang TL, Tzeng CC, Chen CC (2004) Inhibition of ICAM-1 gene expression, monocyte adhesion and cancer cell invasion by targeting IKK complex: molecular and functional study of novel alpha-methylene-gamma-butyrolactone derivatives. Carcinogenesis 25:1925–1934

    Article  CAS  PubMed  Google Scholar 

  47. Ondrey FG, Dong G, Sunwoo J, Chen Z, Wolf JS, Crowl-Bancroft CV, Mukaida N, Van Waes C (1999) Constitutive activation of transcription factors NF-(kappa)B, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines that express pro-inflammatory and pro-angiogenic cytokines. Mol Carcinog 26:119–129

    Article  CAS  PubMed  Google Scholar 

  48. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 98:12485–12490

    Article  CAS  PubMed  Google Scholar 

  49. Sennlaub F, Valamanesh F, Vazquez-Tello A, El-Asrar AM, Checchin D, Brault S, Gobeil F, Beauchamp MH, Mwaikambo B, Courtois Y, Geboes K, Varma DR, Lachapelle P, Ong H, Behar-Cohen F, Chemtob S (2003) Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy. Circulation 108:198–204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Prof. M.L. Del Basso De Caro is gratefully thanked for the assistance and technical support. We also kindly acknowledge Dr. M.T. Ribecco for her constant help and invaluable suggestions. This work has been supported by the Italian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Carnuccio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementry legend information (DOC 22KB).

Supplementry figures (PPT 1.71 MB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Stefano, D., Nicolaus, G., Maiuri, M.C. et al. NF-κB blockade upregulates Bax, TSP-1, and TSP-2 expression in rat granulation tissue. J Mol Med 87, 481–492 (2009). https://doi.org/10.1007/s00109-009-0443-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0443-6

Keywords

Navigation