Skip to main content
Log in

A new redox-dependent mechanism of MMP-1 activity control comprising reduced low-molecular-weight thiols and oxidizing radicals

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs), a family of zinc-dependent proteinases, participate in remodeling and degradation of the extracellular matrix proteins. The activity of MMPs is thought to be predominately posttranslationally regulated via proteolytic activation of precursor zymogens or via their naturally occurring endogenous inhibitors. Here, using recombinant MMP-1, we investigated new redox-dependent mechanisms of proteinase activity regulation by low-molecular-weight thiols. We find that glutathione (GSH), cysteine, homocysteine, and N-acetylcysteine at physiological concentrations competitively reduce MMP-1 activity up to 75% with an efficiency of cysteine ≥ GSH > homocysteine > N-acetylcysteine. In contrast, S-derivatized thiols completely lack this inhibitory activity. Interestingly, the competitive GSH-mediated inhibition of MMP-1-activity can be fully reversed abrogated by oxidizing radicals like NO2 or Trolox radicals, here generated by UVA irradiation of nitrite or Trolox, two relevant agents in human skin physiology. This redox-dependent reactivation of the inactive GSH–MMP-1-complex comprises GSH oxidation and is significantly inhibited in the presence of ascorbic acid, an effective NO2 and Trolox radical scavenger. We here offer a new concept of redox-sensitive control of MMP-1 activity based on the inhibitory effect of reduced thiols and reactivation by a mechanism comprising derivatization or oxidation of the MMP-1-bound inhibitory-acting thiol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MMP-1:

matrix metalloproteinase-1

GSH:

glutathione

GSSG:

oxidized glutathione

ECM:

extracellular matrix

TIMP:

tissue inhibitors of MMPs

NO:

nitric oxide

NO2:

nitrogen dioxide

ROS:

reactive oxygen species

RNS:

reactive nitrogen species

References

  1. Xue M, Le NT, Jackson CJ (2006) Targeting matrix metalloproteases to improve cutaneous wound healing. Expert Opin Ther Targets 10:143–155

    Article  PubMed  CAS  Google Scholar 

  2. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore!. Curr Opin Cell Biol 13:534–540

    Article  PubMed  CAS  Google Scholar 

  3. Brenneisen P, Sies H, Scharffetter-Kochanek K (2002) Ultraviolet-B irradiation and matrix metalloproteinases: from induction via signaling to initial events. Ann N Y Acad Sci 973:31–43

    Article  PubMed  CAS  Google Scholar 

  4. Kerkela E, Saarialho-Kere U (2003) Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol 12:109–125

    Article  PubMed  CAS  Google Scholar 

  5. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Article  PubMed  CAS  Google Scholar 

  6. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  7. Sudel KM, Venzke K, Knussmann-Hartig E, Moll I, Stab F, Wenck H, Wittern KP, Gercken G, Gallinat S (2003) Tight control of matrix metalloproteinase-1 activity in human skin. Photochem Photobiol 78:355–360

    Article  PubMed  Google Scholar 

  8. Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87:5578–5582

    Article  PubMed  Google Scholar 

  9. Springman EB, Angleton EL, Birkedal-Hansen H, Van Wart HE (1990) Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc Natl Acad Sci USA 87:364–368

    Article  PubMed  CAS  Google Scholar 

  10. Weiss SJ, Peppin G, Ortiz X, Ragsdale C, Test ST (1985) Oxidative autoactivation of latent collagenase by human neutrophils. Science (New York, NY) 227:747–749

    CAS  Google Scholar 

  11. Okamoto T, Akaike T, Nagano T, Miyajima S, Suga M, Ando M, Ichimori K, Maeda H (1997) Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism for procollagenase activation involving nitric oxide. Arch Biochem Biophys 342:261–274

    Article  PubMed  CAS  Google Scholar 

  12. Maeda H, Okamoto T, Akaike T (1998) Human matrix metalloprotease activation by insults of bacterial infection involving proteases and free radicals. Biol Chem 379:193–200

    Article  PubMed  CAS  Google Scholar 

  13. Saari H, Sorsa T, Lindy O, Suomalainen K, Halinen S, Konttinen YT (1992) Reactive oxygen species as regulators of human neutrophil and fibroblast interstitial collagenases. Int J Tissue React 14:113–120

    PubMed  CAS  Google Scholar 

  14. Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37:768–784

    Article  PubMed  CAS  Google Scholar 

  15. Nelson KK, Subbaram S, Connor KM, Dasgupta J, Ha XF, Meng TC, Tonks NK, Melendez JA (2006) Redox-dependent matrix metalloproteinase-1 expression is regulated by JNK through Ets and AP-1 promoter motifs. J Biol Chem 281:14100–14110

    Article  PubMed  CAS  Google Scholar 

  16. Steffen M, Sarkela TM, Gybina AA, Steele TW, Trasseth NJ, Kuehl D, Giulivi C (2001) Metabolism of S-nitrosoglutathione in intact mitochondria. Biochem J 356:395–402

    Article  PubMed  CAS  Google Scholar 

  17. Krischel V, Bruch-Gerharz D, Suschek C, Kroncke KD, Ruzicka T, Kolb-Bachofen V (1998) Biphasic effect of exogenous nitric oxide on proliferation and differentiation in skin derived keratinocytes but not fibroblasts. J Invest Dermatol 111:286–291

    Article  PubMed  CAS  Google Scholar 

  18. Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    Article  PubMed  CAS  Google Scholar 

  19. Duling DR (1994) Simulation of multiple isotropic spin-trap EPR spectra. J Magn Reson B 104:105–110

    Article  PubMed  CAS  Google Scholar 

  20. Fischer M, Warneck P (1996) Photodecomposition of nitrite and undissociated nitrous acid in aqueous solution. J Phys Chem 100:18749–18756

    Article  CAS  Google Scholar 

  21. Paunel AN, Dejam A, Thelen S, Kirsch M, Horstjann M, Gharini P, Murtz M, Kelm M, de Groot H, Kolb-Bachofen V, Suschek CV (2005) Enzyme-independent nitric oxide formation during UVA challenge of human skin: characterization, molecular sources, and mechanisms. Free Radic Biol Med 38:606–615

    Article  PubMed  CAS  Google Scholar 

  22. Suschek CV, Paunel A, Kolb-Bachofen V (2005) Nonenzymatic nitric oxide formation during UVA irradiation of human skin: experimental setups and ways to measure. Methods Enzymol 396:568–578

    Article  PubMed  CAS  Google Scholar 

  23. Kirsch M, de Groot H (2000) Ascorbate is a potent antioxidant against peroxynitrite-induced oxidation reactions. Evidence that ascorbate acts by re-reducing substrate radicals produced by peroxynitrite. J Biol Chem 275:16702–16708

    Article  PubMed  CAS  Google Scholar 

  24. Kirsch M, Korth HG, Sustmann R, de Groot H (2002) The pathobiochemistry of nitrogen dioxide. Biol Chem 383:389–399

    Article  PubMed  CAS  Google Scholar 

  25. Bowry VW, Mohr D, Cleary J, Stocker R (1995) Prevention of tocopherol-mediated peroxidation in ubiquinol-10-free human low density lipoprotein. J Biol Chem 270:5756–5763

    Article  PubMed  CAS  Google Scholar 

  26. Bedard L, Young MJ, Hall D, Paul T, Ingold KU (2001) Quantitative studies on the peroxidation of human low-density lipoprotein initiated by superoxide and by charged and neutral alkylperoxyl radicals. J Am Chem Soc 123:12439–12448

    Article  PubMed  CAS  Google Scholar 

  27. Fu X, Kassim SY, Parks WC, Heinecke JW (2001) Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 276:41279–41287

    Article  PubMed  CAS  Google Scholar 

  28. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98:2572–2579

    Article  PubMed  CAS  Google Scholar 

  29. Leib SL, Leppert D, Clements J, Tauber MG (2000) Matrix metalloproteinases contribute to brain damage in experimental pneumococcal meningitis. Infect Immun 68:615–620

    Article  PubMed  CAS  Google Scholar 

  30. Upadhya GA, Strasberg SM (2000) Glutathione, lactobionate, and histidine: cryptic inhibitors of matrix metalloproteinases contained in University of Wisconsin and histidine/tryptophan/ketoglutarate liver preservation solutions. Hepatology 31:1115–1122

    Article  PubMed  CAS  Google Scholar 

  31. Emara M, Cheung PY (2006) Inhibition of sulfur compounds and antioxidants on MMP-2 and -9 at the activity level found during neonatal hypoxia-reoxygenation. Eur J Pharmacol 544:168–173

    Article  PubMed  CAS  Google Scholar 

  32. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  33. Kleifeld O, Van den Steen PE, Frenkel A, Cheng F, Jiang HL, Opdenakker G, Sagi I (2000) Structural characterization of the catalytic active site in the latent and active natural gelatinase B from human neutrophils. J Biol Chem 275:34335–34343

    Article  PubMed  CAS  Google Scholar 

  34. Cheng F, Zhang RH, Luo XM, Shen JH, Li X, Gu JD, Zhu WL, Shen JK, Sagi I, Ji RY, Chen KX, Jiang HL (2002) Quantum chemistry study on the interaction of the exogenous ligands and the catalytic zinc ion in matrix metalloproteinases. J Phys Chem B 106:4552–4559

    Article  CAS  Google Scholar 

  35. Saari H, Suomalainen K, Lindy O, Konttinen YT, Sorsa T (1990) Activation of latent human neutrophil collagenase by reactive oxygen species and serine proteases. Biochem Biophys Res Commun 171:979–987

    Article  PubMed  CAS  Google Scholar 

  36. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H (2001) Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 276:29596–29602

    Article  PubMed  CAS  Google Scholar 

  37. Zafiriou OC, Bonneau R (1987) Wavelength-dependent quantum yield of OH radical formation from photolysis of nitrite ion in water. PhotochemPhotobiol 45:723–727

    Article  CAS  Google Scholar 

  38. Packer JE, Slater TF, Willson RL (1979) Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278:737–738

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph V. Suschek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, S., Volkmar, C.M., Kolb-Bachofen, V. et al. A new redox-dependent mechanism of MMP-1 activity control comprising reduced low-molecular-weight thiols and oxidizing radicals. J Mol Med 87, 261–272 (2009). https://doi.org/10.1007/s00109-008-0420-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0420-5

Keywords

Navigation