Journal of Molecular Medicine

, Volume 86, Issue 5, pp 531–540 | Cite as

A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells

  • Maria Vittoria Verga Falzacappa
  • Guillem Casanovas
  • Matthias W. Hentze
  • Martina U. Muckenthaler
Original Article


The precise regulation of the iron-regulatory hormone hepcidin is essential to maintain body iron homeostasis: Hepcidin deficiency induces iron overload, and hepcidin excess results in anaemia. Mutations in the gene HFE2 cause severe iron overload and are associated with low hepcidin expression. Recent data suggest that HFE2 is a bone morphogenetic protein (BMP) co-receptor, and that the decreased hepcidin mRNA expression because of HFE2 dysfunction is a result of impaired BMP signalling ability. In this study, we identify a critical BMP-responsive element (BMP-RE) at position −84/−79 of the hepcidin promoter. We show that this element mediates HFE2-dependent basal hepcidin mRNA expression under control conditions. Unexpectedly, the mutation of the same BMP-RE element also severely impairs hepcidin activation in response to IL-6. These data uncover a missing link in the HFE2-mediated control of hepcidin expression and suggest that the BMP-RE controls hepcidin promoter activity mediated by HFE2 and inflammatory stimuli.


Hepcidin BMP HFE2 STAT-3 Promoter IL-6 


  1. 1.
    Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dube MP, Andres L, MacFarlane J, Sakellaropoulos N, Politou M, Nemeth E, Thompson J, Risler JK, Zaborowska C, Babakaiff R, Radomski CC, Pape TD, Davidas O, Christakis J, Brissot P, Lockitch G, Ganz T, Hayden MR, Goldberg YP (2004) Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 36:77–82PubMedCrossRefGoogle Scholar
  2. 2.
    Roetto A, Papanikolaou G, Politou M, Alberti F, Girelli D, Christakis J, Loukopoulos D, Camaschella C (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33:21–22PubMedCrossRefGoogle Scholar
  3. 3.
    Lanzara C, Roetto A, Daraio F, Rivard S, Ficarella R, Simard H, Cox TM, Cazzola M, Piperno A, Gimenez-Roqueplo AP, Grammatico P, Volinia S, Gasparini P, Camaschella C (2004) Spectrum of hemojuvelin gene mutations in 1q-linked juvenile hemochromatosis. Blood 103:4317–4321PubMedCrossRefGoogle Scholar
  4. 4.
    Huang FW, Pinkus JL, Pinkus GS, Fleming MD, Andrews NC (2005) A mouse model of juvenile hemochromatosis. J Clin Invest 115:2187–2191PubMedCrossRefGoogle Scholar
  5. 5.
    Lin L, Goldberg YP, Ganz T (2005) Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin. Blood 106:2884–2889PubMedCrossRefGoogle Scholar
  6. 6.
    Niederkofler V, Salie R, Arber S (2005) Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest 115:2180–2186PubMedCrossRefGoogle Scholar
  7. 7.
    Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093PubMedCrossRefGoogle Scholar
  8. 8.
    Ganz T, Nemeth E (2006) Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol 290:G199–203PubMedCrossRefGoogle Scholar
  9. 9.
    Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297PubMedCrossRefGoogle Scholar
  10. 10.
    Muckenthaler M, Roy CN, Custodio AO, Minana B, deGraaf J, Montross LK, Andrews NC, Hentze MW (2003) Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis. Nat Genet 34:102–107PubMedCrossRefGoogle Scholar
  11. 11.
    Nicolas G, Viatte L, Lou DQ, Bennoun M, Beaumont C, Kahn A, Andrews NC, Vaulont S (2003) Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 34:97–101PubMedCrossRefGoogle Scholar
  12. 12.
    Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ramm GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361:669–673PubMedCrossRefGoogle Scholar
  13. 13.
    Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C (2005) Hepcidin is decreased in TFR2-Hemochromatosis. Blood 105:1803–1806PubMedCrossRefGoogle Scholar
  14. 14.
    Wallace DF, Summerville L, Lusby PE, Subramaniam VN (2005) First phenotypic description of transferrin receptor 2 knockout mouse, and the role of hepcidin. Gut 54:980–986PubMedCrossRefGoogle Scholar
  15. 15.
    Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, Andrews NC, Lin HY (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38:531–539PubMedCrossRefGoogle Scholar
  16. 16.
    Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY (2007) Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 117:1933–1939PubMedCrossRefGoogle Scholar
  17. 17.
    Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16:251–263PubMedCrossRefGoogle Scholar
  18. 18.
    Wang RH, Li C, Xu X, Zheng Y, Xiao C, Zerfas P, Cooperman S, Eckhaus M, Rouault T, Mishra L, Deng CX (2005) A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab 2:399–409PubMedCrossRefGoogle Scholar
  19. 19.
    Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW, Muckenthaler MU (2006) STAT-3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109:353–358PubMedCrossRefGoogle Scholar
  20. 20.
    Wrighting DMAN (2006) Interleukin-6 induces hepcidin expression through STAT3. Blood 108:3204–3209PubMedCrossRefGoogle Scholar
  21. 21.
    Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100PubMedCrossRefGoogle Scholar
  22. 22.
    Yang YC, Piek E, Zavadil J, Liang D, Xie D, Heyer J, Pavlidis P, Kucherlapati R, Roberts AB, Bottinger EP (2003) Hierarchical model of gene regulation by transforming growth factor beta. Proc Natl Acad Sci U S A 100:10269–10274PubMedCrossRefGoogle Scholar
  23. 23.
    Mostert V, Wolff S, Dreher I, Kohrle J, Abel J (2001) Identification of an element within the promoter of human selenoprotein P responsive to transforming growth factor-beta. Eur J Biochem 268:6176–6181PubMedCrossRefGoogle Scholar
  24. 24.
    Korchynskyi O, ten Dijke P (2002) Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 277:4883–4891PubMedCrossRefGoogle Scholar
  25. 25.
    Kusanagi K, Inoue H, Ishidou Y, Mishima HK, Kawabata M, Miyazono K (2000) Characterization of a bone morphogenetic protein-responsive Smad-binding element. Mol Biol Cell 11:555–565PubMedGoogle Scholar
  26. 26.
    Truksa J, Peng H, Lee P, Beutler E (2006) Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci U S A 103:10289–10293PubMedCrossRefGoogle Scholar
  27. 27.
    Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810PubMedCrossRefGoogle Scholar
  28. 28.
    Ross S, Cheung E, Petrakis TG, Howell M, Kraus WL, Hill CS (2006) Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription. EMBO J 25:4490–4502PubMedCrossRefGoogle Scholar
  29. 29.
    Truksa J, Lee P, Beutler E (2007) The role of STAT, AP-1, E-box and TIEG motifs in the regulation of hepcidin by IL-6 and BMP-9: lessons from human HAMP and murine Hamp1 and Hamp2 gene promoters. Blood Cells Mol Dis 39:255–262PubMedCrossRefGoogle Scholar
  30. 30.
    Truksa J, Lee P, Peng H, Flanagan J, Beutler E (2007) The distal location of the iron responsive region of the hepcidin promoter. Blood 110:3436–3437PubMedCrossRefGoogle Scholar
  31. 31.
    Lee P, Peng H, Gelbart T, Beutler E (2004) The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient hepatocytes. Proc Natl Acad Sci U S A 101:9263–9265PubMedCrossRefGoogle Scholar
  32. 32.
    Constante M, Jiang W, Wang D, Raymond VA, Bilodeau M, Santos MM (2006) Distinct requirements for Hfe in basal and induced hepcidin levels in iron overload and inflammation. Am J Physiol Gastrointest Liver Physiol 291:G229–237PubMedCrossRefGoogle Scholar
  33. 33.
    Frazer DM, Wilkins SJ, Millard KN, McKie AT, Vulpe CD, Anderson GJ (2004) Increased hepcidin expression and hypoferraemia associated with an acute phase response are not affected by inactivation of HFE. Br J Haematol 126:434–436PubMedCrossRefGoogle Scholar
  34. 34.
    Roy CN, Custodio AO, de Graaf J, Schneider S, Akpan I, Montross LK, Sanchez M, Gaudino A, Hentze MW, Andrews NC, Muckenthaler MU (2004) An Hfe-dependent pathway mediates hyposideremia in response to lipopolysaccharide-induced inflammation in mice. Nat Genet 36:481–485PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Maria Vittoria Verga Falzacappa
    • 1
    • 2
  • Guillem Casanovas
    • 1
    • 2
    • 3
  • Matthias W. Hentze
    • 2
    • 3
  • Martina U. Muckenthaler
    • 1
    • 2
  1. 1.Department of Pediatric Oncology, Hematology and ImmunologyUniversity of HeidelbergHeidelbergGermany
  2. 2.Molecular Medicine Partnership UnitUniversity of HeidelbergHeidelbergGermany
  3. 3.European Molecular Biology Laboratory (EMBL)HeidelbergGermany

Personalised recommendations