Skip to main content
Log in

CNTF: a target therapeutic for obesity-related metabolic disease?

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Obesity and type 2 diabetes are the most prevalent metabolic diseases in the western world. Alarmingly, the cluster of pathologies characteristic of obesity-induced disease have started to emerge in children, a phenomenon that up until a decade ago was inconceivable. Hence, the development of new strategies to treat ‘metabolic disease’ is most warranted. Growing evidence suggests that during type 2 diabetes, a state of chronic low-grade inflammation exists in metabolically active tissues such as the liver, adipose tissue and skeletal muscle. This inflammation is often secondary to lipid accumulation in insulin-responsive tissues. Recent studies have focused on the therapeutic potential of ciliary neurotrophic factor (CNTF). CNTF is a pluripotent neurocytokine and, has shown promise as a potential anti-obesogenic therapy. CNTF acts both centrally and peripherally, mimics the biological actions of leptin while overcoming “leptin resistance”, remains effective even after termination of therapy if administered centrally, and appears to reduce inflammatory signaling cascades associated with lipid accumulation in liver and skeletal muscle. The advantages and disadvantages of CNTF as a therapeutic strategy to alleviate obesity-associated diseases will be highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Flegal KM, Carroll MD, Ogden CL, Johnson CL (2002) Prevalence and trends in obesity among US adults, 1999–2000. JAMA 288:1723–1727

    Article  PubMed  Google Scholar 

  2. Mascie-Taylor CG, Karim E (2003) The burden of chronic disease. Science 302:1921–1922

    Article  PubMed  CAS  Google Scholar 

  3. Giorgino F, Laviola L, Leonardini A (2005) Pathophysiology of type 2 diabetes: rationale for different oral antidiabetic treatment strategies. Diabetes Res Clin Pract 68(Suppl1):S22–S29

    Article  PubMed  CAS  Google Scholar 

  4. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  5. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    Article  PubMed  CAS  Google Scholar 

  6. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    Article  PubMed  CAS  Google Scholar 

  7. Flier JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116:337–350

    Article  PubMed  CAS  Google Scholar 

  8. Oh-I S, Shimizu H, Sato T, Uehara Y, Okada S, Mori M (2005) Molecular mechanisms associated with leptin resistance: n−3 polyunsaturated fatty acids induce alterations in the tight junction of the brain. Cell Metab 1:331–341

    Article  PubMed  CAS  Google Scholar 

  9. Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG, Hara T, Miyajima A (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 14:2816–2826

    PubMed  CAS  Google Scholar 

  10. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, Metcalf D, Nicola NA, Hilton DJ (1997) A family of cytokine-inducible inhibitors of signaling. Nature 387:917–921

    Article  PubMed  CAS  Google Scholar 

  11. Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS (2004) Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 10:734–738

    Article  PubMed  CAS  Google Scholar 

  12. Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A (2004) Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 10:739–743

    Article  PubMed  CAS  Google Scholar 

  13. Kievit P, Howard JK, Badman MK, Balthasar N, Coppari R, Mori H, Lee CE, Elmquist JK, Yoshimura A, Flier JS (2006) Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells. Cell Metab 4:123–132

    Article  PubMed  CAS  Google Scholar 

  14. Bjornholm M, Munzberg H, Leshan RL, Villanueva EC, Bates SH, Louis GW, Jones JC, Ishida-Takahashi R, Bjorbaek C, Myers Jr MG (2007) Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest 117:1354–1360

    Article  PubMed  CAS  Google Scholar 

  15. Gao Q, Mezei G, Nie Y, Rao Y, Choi CS, Bechmann I, Leranth C, Toran-Allerand D, Priest CA, Roberts JL, Gao XB, Mobbs C, Shulman GI, Diano S, Horvath TL (2007) Anorectic estrogen mimics leptin’s effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat Med 13:89–94

    Article  PubMed  CAS  Google Scholar 

  16. Watt MJ, Dzamko N, Thomas WG, Rose-John S, Ernst M, Carling D, Kemp BE, Febbraio MA, Steinberg GR (2006) CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat Med 12:541–548

    Article  PubMed  CAS  Google Scholar 

  17. Ueki K, Kondo T, Tseng YH, Kahn CR (2004) Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci USA 101:10422–10427

    Article  PubMed  CAS  Google Scholar 

  18. Steinberg GR, Parolin ML, Heigenhauser GJ, Dyck DJ (2002) Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab 283:E187–E192

    PubMed  CAS  Google Scholar 

  19. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New Engl J Med 334:292–295

    Article  PubMed  CAS  Google Scholar 

  20. Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1:1311–1314

    Article  PubMed  CAS  Google Scholar 

  21. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O’Rahilly S (2002) Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110:1093–1103

    PubMed  CAS  Google Scholar 

  22. Adler R, Landa KB, Manthorpe M, Varon S (1979) Cholinergic neuronotrophic factors: intraocular distribution of trophic activity for ciliary neurons. Science 204:1434–1436

    Article  PubMed  CAS  Google Scholar 

  23. Lin LF, Mismer D, Lile JD, Armes LG, Butler ET 3rd, Vannice JL, Collins F (1989) Purification, cloning and expression of ciliary neurotrophic factor (CNTF). Science 246:1023–1025

    Article  PubMed  CAS  Google Scholar 

  24. Stöckli KA, Lottspeich F, Sendtner M, Masiakowski P, Carroll P, Gotz R, Lindholm D, Thoenen H (1989) Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 342:920–923

    Article  PubMed  Google Scholar 

  25. Sleeman MW, Anderson KD, Lambert PD, Yancopoulos GD, Wiegand SJ (2000) The ciliary neurotrophic factor and its receptor, CNTFRα. Pharm Acta Helv 74:265–272

    Article  PubMed  CAS  Google Scholar 

  26. Davis S, Aldrich TH, Valenzuela DM, Wong VV, Furth ME, Squinto SP, Yancopoulos GD (1991) The receptor for ciliary neurotrophic factor. Science 253:59–63

    Article  PubMed  CAS  Google Scholar 

  27. Schuster B, Kovaleva M, Sun Y, Regenhard P, Matthews V, Grotzinger J, Rose-John S, Kallen KJ (2003) Signalling of human ciliary neurotrophic factor (CNTF) revisited: the interleukin-6 (IL-6) receptor can serve as an α-receptor for CNTF. J Biol Chem 278:9528–9535

    Article  PubMed  CAS  Google Scholar 

  28. Kallen K-J, Grotzinger J, Rose-John S (2000) New perspectives on the design of cytokines and growth factors. Trends Biotechnol 18:455–461

    Article  PubMed  CAS  Google Scholar 

  29. Davis S, Aldrich TH, Ip NY, Stahl N, Scherer S, Farruggelia T, DiStefano PS, Curtis R, Panayotatos N, Gascan H (1993) Released form of CNTF receptor alpha component as a soluble mediator of CNTF responses. Science 259:1736–1739

    Article  PubMed  CAS  Google Scholar 

  30. Chen X, Mao Z, Liu S, Liu H, Wang X, Wu H, Wu Y, Zhao T, Fan W, Li Y, Yew DT, Kindler PM, Li L, He Q, Qian L, Wang X, Fan M (2005) Dedifferentiation of adult human myoblasts induced by ciliary neurotrophic factor in vitro. Mol Biol Cell 16:3140–3151

    Article  PubMed  CAS  Google Scholar 

  31. Guillet C, Auguste P, Mayo W, Kreher P, Gascan H (1999) Ciliary neurotrophic factor is a regulator of muscular strength in aging. J Neurosci 19:1257–1262

    PubMed  CAS  Google Scholar 

  32. ALS CNTF Treatment Study Group (1996) A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rhCNTF) in amyotrophic lateral sclerosis. Neurology 46:1244–1249

    Google Scholar 

  33. Gloaguen I, Costa P, Demartis A, Lazzaro D, Di Marco A, Graziani R, Paonessa G, Chen F, Rosenblum CI, Van der Ploeg LH, Cortese R, Ciliberto G, Laufer R (1997) Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc Natl Acad Sci USA 94:6456–6461

    Article  PubMed  CAS  Google Scholar 

  34. Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A, Corcoran TL, Murray JD, Thabet KE, Yancopoulos GD, Wiegand SJ (2001) Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci USA 98:4652–4657

    Article  PubMed  CAS  Google Scholar 

  35. Kalra SP (2001) Circumventing leptin resistance for weight control. Proc. Natl Acad Sci USA 98:4279–4281

    Article  PubMed  CAS  Google Scholar 

  36. Kelly JF, Elias CF, Lee CE, Ahima RS, Seeley RJ, Bjorbaek C, Oka T, Saper CB, Flier JS, Elmquist JK (2004) Ciliary neurotrophic factor and leptin induce distinct patterns of immediate early gene expression in the brain. Diabetes 53:911–920

    Article  PubMed  CAS  Google Scholar 

  37. Prima V, Tennant M, Gorbatyuk OS, Muzyczka N, Scarpace PJ, Zolotukhin S (2004) Differential modulation of energy balance by leptin, ciliary neurotrophic factor, and leukemia inhibitory factor gene delivery: microarray deoxyribonucleic acid-chip analysis of gene expression. Endocrinology 145:2035–2045

    Article  PubMed  CAS  Google Scholar 

  38. Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310:679–683

    Article  PubMed  CAS  Google Scholar 

  39. Janoschek R, Plum L, Koch L, Munzberg H, Diano S, Shanabrough M, Muller W, Horvath TL, Bruning JC (2006) gp130 signaling in proopiomelanocortin neurons mediates the acute anorectic response to centrally applied ciliary neurotrophic factor. Proc Natl Acad Sci USA 103:10707–10712

    Article  PubMed  CAS  Google Scholar 

  40. Xu B, Dube MG, Kalra PS, Farmerie WG, Kaibara A, Moldawer LL, Martin D, Kalra SP (1998) Anorectic effects of the cytokine, ciliary neurotrophic factor, are mediated by hypothalamic neuropeptide Y: Comparison with leptin. Endocrinology 139:466–473

    Article  PubMed  CAS  Google Scholar 

  41. Steinberg GR, Watt MJ, Fam BC, Proietto J, Andrikopoulos S, Allen AM, Febbraio MA, Kemp BE (2006) Ciliary neurotrophic factor suppresses hypothalamic AMP-kinase signaling in leptin-resistant obese mice. Endocrinology 147:3906–3914

    Article  PubMed  CAS  Google Scholar 

  42. Ott V, Fasshauer M, Dalski A, Klein HH, Klein J (2002) Direct effects of ciliary neurotrophic factor on brown adipocytes: evidence for a role in peripheral regulation of energy homeostasis. J Endocrinol 173:R1–R8

    Article  PubMed  CAS  Google Scholar 

  43. Zvonic S, Cornelius P, Stewart WC, Mynatt RL, Stephens JM (2003) The regulation and activation of ciliary neurotrophic factor signaling proteins in adipocytes. J Biol Chem 278:2228–2235

    Article  PubMed  CAS  Google Scholar 

  44. Ahima RS (2006) Overcoming insulin resistance with CNTF. Nat Med 12:511–512

    Article  PubMed  CAS  Google Scholar 

  45. Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL, Roden M, Shulman GI (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42:113–116

    Article  PubMed  CAS  Google Scholar 

  46. Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, Jenkins AB, Storlien LH (1997) Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46:983–988

    Article  PubMed  CAS  Google Scholar 

  47. Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T, Kim DW, Liu ZX, Soos TJ, Cline GW, O’Brien WR, Littman DR, Shulman GI (2004) PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest 114:823–827

    PubMed  CAS  Google Scholar 

  48. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11:183–190

    Article  PubMed  CAS  Google Scholar 

  49. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2003) A central role for JNK in obesity and insulin resistance. Nature 420:333–336

    Article  CAS  Google Scholar 

  50. Watt MJ, Hevener A, Lancaster GI, Febbraio MA (2006) Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues. Endocrinology 147:2077–2085

    Article  PubMed  CAS  Google Scholar 

  51. Sleeman MW, Garcia K, Liu R, Murray JD, Malinova L, Moncrieffe M, Yancopoulos GD, Wiegand SJ (2003) Ciliary neurotrophic factor improves diabetic parameters and hepatic steatosis and increases basal metabolic rate in db/db mice. Proc Natl Acad Sci USA 100:14297–14302

    Article  PubMed  CAS  Google Scholar 

  52. Bluher S, Moschos S, Bullen J Jr, Kokkotou E, Maratos-Flier E, Wiegand SJ, Sleeman MW, Mantzoros CS (2004) Ciliary neurotrophic factorAx15 alters energy homeostasis, decreases body weight, and improves metabolic control in diet-induced obese and UCP1-DTA mice. Diabetes 53:2787–2796

    Article  PubMed  Google Scholar 

  53. Liu Q-S, Wang Q-J, Du G-H, Zhu S-Y, Gao M, Zhang L, Zhu J-M, Cao J-F (2007) Recombinant human ciliary neurotrophic factor reduces weight partly by regulating nuclear respiratory factor 1 and mitochondrial transcription factor A. Eur J Pharmacol 563:77–82

    Article  PubMed  CAS  Google Scholar 

  54. Liu Q-S, Gao M, Zhu S-Y, Li S-J, Zhang L, Wang Q-J, Du G-H (2007) The novel mechanism of recombinant human ciliary neurotrophic factor on the anti-diabetes activity. Basic Clin Pharmacol Toxicol 101:78–84

    Article  PubMed  CAS  Google Scholar 

  55. Jäger S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104:12017–12022

    Article  PubMed  CAS  Google Scholar 

  56. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142

    Article  PubMed  CAS  Google Scholar 

  57. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. New Engl J Med 350:664–671

    Article  PubMed  CAS  Google Scholar 

  58. Mootha V, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273

    Article  PubMed  CAS  Google Scholar 

  59. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471

    Article  PubMed  CAS  Google Scholar 

  60. Takahashi R, Yokoji H, Misawa H, Hayashi M, Hu J, Deguchi T (1994) A null mutation in the human CNTF gene is not causally related to neurological diseases. Nat Genet 7:79–84

    Article  PubMed  CAS  Google Scholar 

  61. Roth SM, Schrager MA, Ferrell RE, Riechman SE, Metter EJ, Lynch NA, Lindle RS, Hurley BF (2001) CNTF genotype is associated with muscular strength and quality in humans across the adult age span. J Appl Physiol 90:1205–1210

    PubMed  CAS  Google Scholar 

  62. Munzberg H, Tafel J, Busing B, Hinney A, Ziegler A, Mayer H, Siegfried W, Matthaei S, Greten H, Hebebrand J, Hamann A (1998) Screening for variability in the ciliary neurotrophic factor (CNTF) gene: no evidence for association with human obesity. Exp Clin Endocrinol Diabetes 106:108–112

    Article  PubMed  CAS  Google Scholar 

  63. Ettinger MP, Littlejohn TW, Schwartz SL, Weiss SR, McIlwain HH, Heymsfield SB, Bray GA, Roberts WG, Heyman ER, Stambler N, Heshka S, Vicary C, Guler HP (2003) Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study. JAMA 289:1826–1832

    Article  PubMed  CAS  Google Scholar 

  64. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE, Kemp BE, Pedersen BK, Febbraio MA (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55:2688–2697

    Article  PubMed  CAS  Google Scholar 

  65. Klover PJ, Zimmers TA, Koniaris LG, Mooney RA (2003) Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52:2784–2789

    Article  PubMed  CAS  Google Scholar 

  66. Kallen KJ, Grotzinger J, Lelievre E, Vollmer P, Aasland D, Renne C, Mullberg J, Myer zum Buschenfelde KH, Gascan H, Rose-John S (1999) Receptor recognition sites of cytokines are organized as exchangeable modules. Transfer of the leukemia inhibitory factor receptor-binding site from ciliary neurotrophic factor to interleukin-6. J Biol Chem 274:11859–11867

    Article  PubMed  CAS  Google Scholar 

  67. Peelman F, Couturier C, Dam J, Zabeau L, Tavernier J, Jockers R (2006) Techniques: New pharmacological perspectives for the leptin receptor. Trends Pharmacol Sci 27:218–225

    Article  PubMed  CAS  Google Scholar 

  68. Ernst M, Jenkins BJ (2004) Acquiring signaling specificity from the receptor gp130. Trends Genet 20:23–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The support from the National Health and Medical Research Council of Australia (NHMRC), The Australian Research Council, and The Diabetes Australia Research Trust is gratefully acknowledged. VBM is supported, in part, by a Baker Heart Research Institute Early Career Scientist (ECS) Grant; MAF is supported by a Principal Research Fellowship from the NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Febbraio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, V.B., Febbraio, M.A. CNTF: a target therapeutic for obesity-related metabolic disease?. J Mol Med 86, 353–361 (2008). https://doi.org/10.1007/s00109-007-0286-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0286-y

Keywords

Navigation