Skip to main content

Advertisement

Log in

Exonucleolytic degradation of RNA by p53 protein in cytoplasm

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

p53 in cytoplasm displays an intrinsic 3′→5′ exonuclease activity. To understand the significance of p53 exonuclease activity in cytoplasm, cytoplasmic extracts of various cell lines were examined for exonuclease activity with different single-stranded RNA (ssRNA) substrates. Using an in vitro RNA degradation assay, we observed in cytoplasmic extracts of LCC2 cells, expressing high levels of endogenous wtp53, an efficient 3′→5′ exonuclease activity with RNA substrates, removing the 3′-terminal nucleotides. Interestingly, RNA containing AU-rich sequences (ARE) is the permissive substrate for exonucleolytic degradation. Evidence that exonuclease function with RNA detected in cytoplasmic extracts is attributed to the p53 is supported by several facts: (1) this activity closely parallels with status and levels of endogenous cytoplasmic p53; (2) the endogenous exonuclease exerts identical RNA substrate specificity and excision profile characteristic for purified baculovirus—or bacterially-expressed wtp53s; (3) the exonuclease activity with ARE RNA is competed out by the presence of ss or double-stranded DNA substrate utilized by p53 protein in cytoplasm; (4) immunoprecipitation by specific anti-p53 antibodies markedly reduced the exonuclease activity with both RNA and DNA substrates; and (5) transfection of the wtp53, but not exonuclease-deficient mutant p53-R175H, into p53-null H1299 or HCT116 cells induced high levels of exonuclease activity with ARE RNA substrate in cytoplasm with characteristic excision profile. The efficient ARE RNA degradation correlates with the efficient binding of p53 to ARE RNA in cytoplasm. The possible role of p53 exonuclease activity in ARE-mRNA destabilization in cytoplasm, which may be important for expression of proteins that control cell growth and/or apoptosis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Albrechtsen N, Dornreiter I, Grosse F, Kim E, Wiesmuller L, Deppert W (1999) Maintenance of genomic integrity by p53: complementary roles for activated p53. Oncogene 18:7708–7717

    Article  Google Scholar 

  2. Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126

    Article  PubMed  CAS  Google Scholar 

  3. Lane DP (1992) Cancer: p53, guardian of the genome. Nature 358:15–16

    Article  PubMed  CAS  Google Scholar 

  4. Soussi T (1995) The p53 tumor suppressor gene: from molecular biology to clinical investigation. In: Cowell JK (ed) Molecular genetics of cancer Bios Scientific. Oxford, UK, pp 135–178

    Google Scholar 

  5. Hwang BJ, Ford JM, Hanawalt PC, Chu G (1999) Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci U S A 96:424–428

    Article  PubMed  CAS  Google Scholar 

  6. Offer H, Wolkowicz R, Matas D, Blumenstein S, Livneh Z, Rotter V (1999) Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Lett 450:197–204

    Article  PubMed  CAS  Google Scholar 

  7. Zhou J, Ahn J, Wilson SH, Prives C (2001) A role for p53 in base excision repair. EMBO J 20:914–923

    Article  PubMed  CAS  Google Scholar 

  8. Huang P (1998) Excision of mismatched nucleotides from DNA: a potential mechanism for enhancing DNA replication fidelity by the wild-type p53 protein. Oncogene 17:261–270

    Article  PubMed  CAS  Google Scholar 

  9. Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212

    Article  PubMed  CAS  Google Scholar 

  10. Fontoura BMA, Sorokina EA, David E, Carroll RB (1992) p53 is covalently linked to 5.8S rRNA. Mol Cell Biol 12:5145–5151

    PubMed  CAS  Google Scholar 

  11. Marechal V, Elenbaas B, Piette J, Nicolas J, Levine AJ (1994) The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol 4:7414–7420

    Google Scholar 

  12. Miller SJ, Suthiphongchai T, Zambetti GP, Ewen ME (2000) p53 binds selectively to the 5' untranslated region of cdk4, an RNA element necessary and sufficient for transforming growth factor beta- and p53-mediated translational inhibition of cdk4. Mol Cell Biol 20:8420–8431

    Article  PubMed  CAS  Google Scholar 

  13. Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F, Deppert W (1995) Negative feedback regulation of wild-type p53 biosynthesis. EMBO J 14:4442–4449

    PubMed  CAS  Google Scholar 

  14. Lilling G, Novitsky E, Sidi Y, Bakhanashvili M (2003) p53-associated 3′→5′ exonuclease activity in nuclear and cytoplasmic compartments of cells. Oncogene 22:233–245

    Article  PubMed  Google Scholar 

  15. Bakhanashvili M, Novitsky E, Lilling G, Rahav G (2004) p53 in cytoplasm may enhance the accuracy of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene 23:6890–6899

    Article  PubMed  CAS  Google Scholar 

  16. Bakhanashvili M, Novitsky E, Rubinstein E, Levy I, Rahav G (2005) Excision of nucleoside analogs from DNA by p53 protein, a potential cellular mechanism of resistance to inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 49:1576–1579

    Article  PubMed  CAS  Google Scholar 

  17. Bakhanashvili M, Rahav G (2006) A role for tumor suppressor protein p53 in the fidelity of DNA synthesis and resistance towards nucleoside analogs. Curr Cancer Ther Rev 2:231–241

    Article  CAS  Google Scholar 

  18. Chen C-YA, Shyu A-B (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20:465–470

    Article  PubMed  CAS  Google Scholar 

  19. Mukherjee D, Gao M, O’Connor JP, Raijmakers R, Pruijn G, Lutz CS, Wilusz J (2002) The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21:165–174

    Article  PubMed  CAS  Google Scholar 

  20. Hirsch HH, Backenstoss V, Moroni C (1996) Impaired interleukin-3 mRNA decay in autocrine mast cell tumors after transient calcium ionophore stimulation. Growth Factors 13:99–110

    Article  PubMed  CAS  Google Scholar 

  21. Lebwohl DE, Muise-Helmericks R, Sepp-Lorenzino L, Serve S, Timaul M, Bol R, Borgen P, Rosen N (1994) A truncated cyclin D1 gene encodes a stable mRNA in a human breast cancer cell line. Oncogene 9:1925–1929

    PubMed  CAS  Google Scholar 

  22. Oberosler P, Hloch P, Ramsperger U, Stahl H (1993) p53-catalyzed annealing of complementary single-stranded nucleic acids. EMBO J 12:2389–2396

    PubMed  CAS  Google Scholar 

  23. Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Yoshida T, Itoh H, Kohno K (2004) Binding of RNA to p53 regulates its oligomerization and DNA-binding activity. Oncogene 23:4371–4379

    Article  PubMed  CAS  Google Scholar 

  24. Ragimov N, Krauskopf A, Navot N, Rotter V, Oren M, Aloni I (1993) Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif. Oncogene 8:1183–1193

    PubMed  CAS  Google Scholar 

  25. Bakhanashvili M, Hizi A (1992b) The fidelity of the RNA-dependent DNA synthesis exhibited by the reverse transcriptases of human immunodeficiency viruses types 1 and 2 and of murine leukemia virus: mispair extension frequencies. Biochemistry 31:9393–9398

    Article  PubMed  CAS  Google Scholar 

  26. Andrews NC, Faller DV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19:2499

    Article  PubMed  CAS  Google Scholar 

  27. Mummenbrauer T, Janus F, Muller B, Wiesmuller L, Deppert W, Gross F (1996) p53 protein exhibits 3′ -to 5 exonuclease activity. Cell 85:1089–1099

    Article  PubMed  CAS  Google Scholar 

  28. Skalski V, Lin Z, Choi BY, Brown KR (2000) Substrate specificity of the p53-associated 3′→5′ exonuclease. Oncogene 19:3321–3329

    Article  PubMed  CAS  Google Scholar 

  29. Bakhanashvili M (2001a) Exonucleolytic proofreading by p53 protein. Eur J Biochem 268:2047–2054

    Article  PubMed  CAS  Google Scholar 

  30. Bakhanashvili M (2001b) p53 enhances the fidelity of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene 20:7635–7644

    Article  PubMed  CAS  Google Scholar 

  31. Melle C, Nasheuer H (2002) Physical and functional interactions of the tumor suppressor protein p53 and DNA polymerase α-primase. Nucleic Acids Res 30:1493–1499

    Article  PubMed  CAS  Google Scholar 

  32. Lilling G, Nordenberg J, Rotter V, Goldfinger N, Peller S, Sidi Y (2002) Altered subcellular localization of p53 in estrogen-dependent and estrogen-independent breast cancer cells. Cancer Invest 20:509–517

    Article  PubMed  CAS  Google Scholar 

  33. Fialcowitz EJ, Brewer BY, Keenan BP, Wilson GM (2005) A hairpin-like structure within an AU-rich mRNA-destabilizing element regulates trans-factor binding selectivity and mRNA decay kinetics. J Biol Chem 280:22406–22417

    Article  PubMed  CAS  Google Scholar 

  34. Zhang T, Kruys V, Huez G, Gueydan C (2002) AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem Soc Trans 30:952–958

    Article  PubMed  CAS  Google Scholar 

  35. Peng SS, Chen C-YA, Shyu A-B (1996) Functional characterization of a non-AUUUA AU-rich element from the c-jun proto-oncogene mRNA: evidence for a novel class of AU-rich elements. Mol Cell Biol 16:1490–1499

    PubMed  CAS  Google Scholar 

  36. Meek DW (1998) New developments in the multi-site phosphorylation and integration of stress signalling at p53. Int J Radiat Biol 74:729–737

    Article  PubMed  CAS  Google Scholar 

  37. Gaitonde SV, Riley JR, Qiao D, Martinez JD (2000) Conformational phenotype of p53 is linked to nuclear translocation. Oncogene 19:4042–4049

    Article  PubMed  CAS  Google Scholar 

  38. Worthington MT, Pelo JW, Sachedina MA, Applegate JL, Arseneau KO, Pizzaro TT (2002) RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein. J Biol Chem 277:48558–48564

    Article  PubMed  CAS  Google Scholar 

  39. Zubiaga AM, Belasco JG, Greenberg ME (1995) The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 15:2219–2230

    PubMed  CAS  Google Scholar 

  40. Stoecklin G, Gross B, Ming X, Moroni C (2003) A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Oncogene 22:3554–3561

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Elena Novitsky for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Bakhanashvili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhanashvili, M., Gedelovich, R., Grinberg, S. et al. Exonucleolytic degradation of RNA by p53 protein in cytoplasm. J Mol Med 86, 75–88 (2008). https://doi.org/10.1007/s00109-007-0247-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0247-5

Keywords

Navigation