Skip to main content

Advertisement

Log in

The different effects of indirubin on effector and CD4+CD25+ regulatory T cells in mice: potential implication for the treatment of autoimmune diseases

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

CD4+CD25+ regulatory T (Treg) cells play an essential role in the induction and maintenance of peripheral self-tolerance. Indirubin, a traditional Chinese medicine, was clinically used in the treatment of chronic myelocytic leukemia as well as some autoimmune diseases, including Alzheimer’s disease, diabetes, and so on. The effects of indirubin on CD4+CD25+Treg cells, which play a critical role in controlling autoimmunity, have not been addressed. In the present study, we observed the cell levels, phenotypes, and immunoregulatory function of CD4+CD25+Treg cells in indirubin-treated mice. Treatment with indirubin significantly enhanced the ratios of CD4+CD25+Treg cells or CD4+CD25+Foxp3+Treg cells to CD4+T cells in peripheral blood, lymph nodes, and spleens (P < 0.01 compared with control mice). CD4+CD25+Foxp3+Treg cells to CD4 single positive cells in the thymi of indirubin-treated mice were significantly higher than those in control mice. Furthermore, splenic CD4+CD25+Treg cells in indirubin-treated mice showed immunosuppressive ability on the immune response of T effector cells to alloantigens or mitogen as efficiently as the control CD4+CD25+Treg cells in vitro. The present studies indicate that CD4+CD25+Treg cells are more resistant to indirubin than effector T cells in vivo. The selectively enhanced CD4+CD25+Treg cell levels by indirubin made host to be more favorable for immune tolerance induction, which opened one possibility for indirubin to treat autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Treg:

regulatory T cells

AIDS:

acquired immune deficiency syndrome

DTH:

delayed-type hypersensitivity reaction

CTLA4:

cytotoxic T-lymphocyte-associated protein 4

FCM:

flow cytometry

FITC:

fluorescein isothiocyanate

Foxp3:

forkhead box protein 3

GITR:

glucocorticoid-induced tumor necrosis factor receptor

LNs:

lymph nodes

MFI:

median fluorescence intensity

MLR:

mixed lymphocytes reaction

PBMCs:

peripheral blood mononuclear cells

PE:

phycoerythrin

PI:

propidium iodide

References

  1. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    Article  PubMed  CAS  Google Scholar 

  2. Billiard F, Litvinova E, Saadoun D, Djelti F, Klatzmann D, Cohen JL, Marodon G, Salomon BL (2006) Regulatory and effector T cell activation levels are prime determinants of in vivo immune regulation. J Immunol 177:2167–2174

    PubMed  CAS  Google Scholar 

  3. Miyara M, Amoura Z, Parizot C, Badoual C, Dorgham K, Trad S, Nochy D, Debre P, Piette JC, Gorochov G (2005) Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol 175:8392–8400

    PubMed  CAS  Google Scholar 

  4. Paust S, Cantor H (2005) Regulatory T cells and autoimmune disease. Immunol Rev 204:195–207

    Article  PubMed  CAS  Google Scholar 

  5. Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54:92–99

    Article  PubMed  CAS  Google Scholar 

  6. Gartner D, Hoff H, Gimsa U, Burmester GR, Brunner-Weinzierl MC (2006) CD25 regulatory T cells determine secondary but not primary remission in EAE: impact on long-term disease progression. J Neuroimmunol 172:73–84

    Article  PubMed  Google Scholar 

  7. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  8. Sakaguchi S (2003) The origin of FOXP3-expressing CD4+ regulatory T cells: thymus or periphery. J Clin Invest 112:1310–1312

    Article  PubMed  CAS  Google Scholar 

  9. Zhang L, Yi H, Xia XP, Zhao Y (2006) Transforming growth factor-beta: an important role in CD4+CD25+ regulatory T cells and immune tolerance. Autoimmunity 39:269–276

    Article  PubMed  CAS  Google Scholar 

  10. Campbell DJ, Ziegler SF (2007) FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol 7:305–310

    Article  PubMed  CAS  Google Scholar 

  11. Merz KH, Schwahn S, Hippe F, Muhlbeyer S, Jakobs S, Eisenbrand G (2004) Novel indirubin derivatives, promising anti-tumor agents inhibiting cyclin-dependent kinases. Int J Clin Pharmacol Ther 42:656–658

    PubMed  CAS  Google Scholar 

  12. Xiao Z, Hao Y, Liu B, Qian L (2002) Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in China. Leuk Lymphoma 43:1763–1768

    Article  PubMed  CAS  Google Scholar 

  13. Hoessel R, Leclerc S, Endicott JA, Nobel ME, Lawrie A, Tunnah P, Leost M, Damiens E, Marie D, Marko D, Niederberger E, Tang W, Eisenbrand G, Meijer L (1999) Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1:60–67

    Article  PubMed  CAS  Google Scholar 

  14. Kim SA, Kim YC, Kim SW, Lee SH, Min JJ, Ahn SG, Yoon JH (2007) Antitumor activity of novel indirubin derivatives in rat tumor model. Clin Cancer Res 13:253–259

    Article  PubMed  CAS  Google Scholar 

  15. Suzuki K, Adachi R, Hirayama A, Watanabe H, Otani S, Watanabe Y, Kasahara T (2005) Indirubin, a Chinese anti-leukaemia drug, promotes neutrophilic differentiation of human myelocytic leukaemia HL-60 cells. Br J Haematol 130:681–690

    Article  PubMed  CAS  Google Scholar 

  16. Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, Muehlbeyer S, Hippe F, Vatter S, Merz KH, Eisenbrand G, Jove R (2005) Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci U S A 102:5998–6003

    Article  PubMed  CAS  Google Scholar 

  17. Kim SH, Kim SW, Choi SJ, Kim YC, Kim TS (2006) Enhancing effect of indirubin derivatives on 1, 25-dihydroxyvitamin D3- and all-trans retinoic acid-induced differentiation of HL-60 leukemia cells. Bioorg Med Chem 14:6752–6758

    Article  PubMed  CAS  Google Scholar 

  18. Perabo FG, Frossler C, Landwehrs G, Schmidt DH, von Rucker A, Wirger A, Muller SC (2006) Indirubin-3′-monoxime, a CDK inhibitor induces growth inhibition and apoptosis-independent up-regulation of survivin in transitional cell cancer. Anticancer Res 26:2129–2135

    PubMed  CAS  Google Scholar 

  19. Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L (2001) Indirubins inhibit lycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 276:251–260

    Article  PubMed  CAS  Google Scholar 

  20. Marko D, Schatzle S, Friedel A, Genzlinger A, Zankl H, Meijer L, Eisenbrand G (2001) Inhibition of cyclin-dependent kinase 1 (CDK1) by indirubin derivatives in human tumour cells. Br J Cancer 84:283–289

    Article  PubMed  CAS  Google Scholar 

  21. Damiens E, Baratte B, Marie D, Eisenbrand G, Meijer L (2001) Anti-mitotic properties of indirubin-3′-monoxime, a CDK/GSK-3 inhibitor: induction of endoreplication following prophase arrest. Oncogene 20:3786–3797

    Article  PubMed  CAS  Google Scholar 

  22. Sethi G, Ahn KS, Sandur SK, Lin X, Chaturvedi MM, Aggarwal BB (2006) Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappa B signaling pathway. J Biol Chem 281:23425–23435

    Article  PubMed  CAS  Google Scholar 

  23. Kunikata T, Tatefuji T, Aga H, Iwaki K, Ikeda M, Kurimoto M (2000) Indirubin inhibits inflammatory reactions in delayed-type hypersensitivity. Eur J Pharmacol 410:93–100

    Article  PubMed  CAS  Google Scholar 

  24. Wang H, Zhao L, Sun Z, Sun L, Zhang B, Zhao Y (2006) A potential side effect of cyclosporin A: inhibition of CD4(+)CD25(+) regulatory T cells in mice. Transplantation 82:1484–1492

    Article  PubMed  CAS  Google Scholar 

  25. Sun Z, Zhao L, Wang H, Sun L, Yi H, Zhao Y (2006) Presence of functional mouse regulatory CD4+CD25+T cells in xenogeneic neonatal porcine thymus-grafted athymic mice. Am J Transplant 6:2841–2850

    Article  PubMed  CAS  Google Scholar 

  26. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  27. Qu Y, Zhang B, Zhao L, Liu G, Ma H, Rao E, Zeng C, Zhao Y (2007) The effect of immunosuppressive drug rapamycin on regulatory CD4(+)CD25(+)Foxp3(+)T cells in mice. Transpl Immunol 17:153–161

    Article  PubMed  CAS  Google Scholar 

  28. Aschenbrenner K, D'Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, Rolink A, Klein L (2007) Selection of Foxp3(+) regulatory T cells specific for self antigen expressed and presented by Aire(+) medullary thymic epithelial cells. Nat Immunol 8:351–358

    Article  PubMed  CAS  Google Scholar 

  29. Yi H, Zhen Y, Jiang L, Zheng J, Zhao Y (2006) The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells. Cell Mol Immunol 3:189–195

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ms. Jing Wang and Ms. Jianxia Peng for their expertise technical assistance, Ms. Qinghuan Li for her excellent laboratory management. This work was supported by grants from 973 Program 2006 CB 503803, National Natural Science Foundation of China (no. 30300312, no. 30470742, no. 30579779, and no. 30600259; M.H.), and Key Clinical Research Project of Public Health Ministry of China 2004-2006 (M.H.), National Natural Science Foundation for Distinguished Young Scholars (C03020504, Y.Z.), 100 Quality Vocational Colleges of Chinese Academy of Sciences (2003-85, Y.Z.), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry (2005-546, Y.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, A., Qu, Y., Zhang, B. et al. The different effects of indirubin on effector and CD4+CD25+ regulatory T cells in mice: potential implication for the treatment of autoimmune diseases. J Mol Med 85, 1263–1270 (2007). https://doi.org/10.1007/s00109-007-0235-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0235-9

Keywords

Navigation