Skip to main content
Log in

CD154-stimulated GM-CSF release by vascular smooth muscle cells elicits monocyte activation—role in atherogenesis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

During the early phase of atherosclerosis, T cells and monocytes attach to and migrate through the endothelium into the vessel wall. To provide an insight into the potential cross talk between T cells and smooth muscle cells (SMC) in atherogenesis, we investigated changes in gene expression caused by CD40 ligation in cultured vascular SMC and their consequences for monocyte activation. CD40 expression in human-cultured SMC was induced by 24-h treatment with tumor necrosis factor-α plus interferon-γ followed by 12-h exposure to mouse myeloma cells stably expressing human CD154 or the corresponding control cells. DNA microarray analysis (Affymetrix HG-U952A chip) indicated 33 up-regulated genes in three individual experiments of which 19 encoded pro-inflammatory adhesion molecules, cytokines, chemokines, and receptors. One functional consequence of this change in gene expression was an activation of transformed human promonocytic-1 monocytes exposed to the conditioned medium of the stimulated SMC. Subsequent antibody neutralization experiments identified granulocyte-macrophage colony-stimulating factor (GM-CSF) as the SMC-derived cytokine responsible for this effect. Thus, vascular SMC-like endothelial cells appear to contribute to the maintenance of an inflammatory response in the atherosclerotic vessel wall upon CD40–CD154 co-stimulation. Among 19 up-regulated pro-inflammatory gene products, GM-CSF plays an important role in SMC-dependent monocyte activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Arterioscler Thromb 14:840–856

    PubMed  CAS  Google Scholar 

  2. Hansson GK, Jonasson L, Lojsthed B, Stemme S, Kocher O, Gabbiani G (1988) Localization of T lymphocytes and macrophages in fibrous and complicated human atherosclerotic plaques. Atherosclerosis 72:135–141

    Article  PubMed  CAS  Google Scholar 

  3. Mach F, Schönbeck U, Sukhova GK, Bourcier T, Bonnefoy JY, Pober JS, Libby P (1997) Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40–CD154 ligand signalling in atherosclerosis. Proc Natl Acad Sci USA 94:1931–1936

    Article  PubMed  CAS  Google Scholar 

  4. Reul RM, Fang JC, Denton MD, Geehan C, Long C, Mitchell RN, Ganz P, Briscoe DM (1997) CD40 and CD40 ligand (CD154) are coexpressed on microvessels in vivo in human cardiac allograft rejection. Transplantation 64:1765–1774

    Article  PubMed  CAS  Google Scholar 

  5. Danese S, Katz JA, Saibeni S, Papa A, Gasbarrini A, Vecchi M, Fiocchi C (2003) Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of inflammatory bowel disease patients. Gut 52:1435–1441

    Article  PubMed  CAS  Google Scholar 

  6. Wagner AH, Gebauer M, Pollok-Kopp B, Hecker M (2002) Cytokine-inducible CD40 expression in human endothelial cells is mediated by interferon regulatory factor-1. Blood 99:520–525

    Article  PubMed  CAS  Google Scholar 

  7. Krzesz R, Wagner AH, Cattaruzza M, Hecker M (1999) Cytokine-inducible CD40 gene expression in vascular smooth muscle cells is mediated by nuclear factor κB and signal transducer and activation of transcription-1. FEBS Lett 453:191–196

    Article  PubMed  CAS  Google Scholar 

  8. Hollenbaugh D, Mischel-Petty N, Edwards CP, Simon JC, Denfeld RW, Kiener PA, Aruffo A (1995) Expression of functional CD40 by vascular endothelial cells. J Exp Med 182:33–40

    Article  PubMed  CAS  Google Scholar 

  9. Thienel U, Loike J, Yellin MJ (1999) CD154 (CD40L) induces human endothelial cell chemokine production and migration of leukocyte subsets. Cell Immunol 198:87–95

    Article  PubMed  CAS  Google Scholar 

  10. Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Förster R, Müller-Berghaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391:591–594

    Article  PubMed  CAS  Google Scholar 

  11. Lienenlüke B, Germann T, Kroczek RA, Hecker M (2000) CD154 stimulation of interleukin-12 synthesis in human endothelial cells. Eur J Immunol 30:2864–2870

    Article  PubMed  Google Scholar 

  12. Schönbeck U, Libby P (2001) The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 58:4–43

    Article  PubMed  Google Scholar 

  13. Cattaruzza M, Wachter R, Wagner AH, Hecker M (2000) Modulation by dihydropyridine-type calcium channel antagonists of cytokine-inducible gene expression in vascular smooth muscle cells. Br J Pharmacol 129:1155–1162

    Article  PubMed  CAS  Google Scholar 

  14. Wagner AH, Güldenzoph B, Lienenlüke B, Hecker M (2004) CD154/CD40-mediated expression of CD154 in endothelial cells: consequences for endothelial cell–monocyte interaction. Arterioscler Thromb Vasc Biol 24:715–720

    Article  PubMed  CAS  Google Scholar 

  15. Schönbeck U, Libby P (2001) CD40 signaling and plaque instability. Circ Res 89:1092–1103

    Article  PubMed  Google Scholar 

  16. Szabolcs MJ, Cannon PJ, Thienel U, Chen R, Michler RE, Chess L, Yellin MJ (2000) Analysis of CD154 and CD40 expression in native coronary atherosclerosis and transplant associated coronary artery disease. Virchows Arch 437:149–159

    Article  PubMed  CAS  Google Scholar 

  17. Mach F, Schönbeck U, Fabunmi RP, Murphy C, Atkinson E, Bonnefoy JY, Graber P, Libby P (1999) T lymphocytes induce endothelial cell matrix metalloproteinase expression by a CD40L-dependent mechanism: implications for tubule formation. Am J Pathol 154:229–238

    PubMed  CAS  Google Scholar 

  18. Aicher A, Shu GL, Magaletti D, Mulvania T, Pezzutto A, Craxton A, Clark EA (1999) Differential role for p38 mitogen-activated protein kinase in regulating CD40-induced gene expression in dendritic cells and B cells. J Immunol 163:5786–5795

    PubMed  CAS  Google Scholar 

  19. Reunanen N, Li SP, Ahonen M, Foschi M, Han J, Kahari VM (2002) Activation of p38 alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem 277:32360–32368

    Article  PubMed  CAS  Google Scholar 

  20. Chaudhuri JD (2005) Genes array out for you: the amazing world of microarrays. Med Sci Monit 11:52–62

    Google Scholar 

  21. Chen XL, Tummala PE, Olliff L, Medford RM (1997) E-selectin gene expression in vascular smooth muscle cells. Evidence for a tissue-specific repressor protein. Circ Res 80:305–311

    PubMed  CAS  Google Scholar 

  22. Bernasconi S, Matteucci C, Sironi M, Conni M, Colotta F, Mosca M, Colombo N, Bonazzi C, Landoni F, Corbetta G (1995) Effects of granulocyte-monocyte colony-stimulating factor (GM-CSF) on expression of adhesion molecules and production of cytokines in blood monocytes and ovarian cancer-associated macrophages. Int J Cancer 60:300–307

    Article  PubMed  CAS  Google Scholar 

  23. Saikh KU, Khan AS, Kissner T, Ulrich RG (2001) IL-15-induced conversion of monocytes to mature dendritic cells. Clin Exp Immunol 126:447–455

    Article  PubMed  CAS  Google Scholar 

  24. Plenz G, Koenig C, Severs NJ, Robenek H (1997) Smooth muscle cells express granulocyte-macrophage colony-stimulating factor in the undiseased and atherosclerotic human coronary artery. Arterioscler Thromb Vasc Biol 17:2489–2499

    PubMed  CAS  Google Scholar 

  25. Filonzi EL, Zoellner H, Stanton H, Hamilton JA (1993) Cytokine regulation of granulocyte-macrophage colony stimulating factor and macrophage colony-stimulating factor production in human arterial smooth muscle cells. Atherosclerosis 99:241–252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 405/B17). The expert technical assistance of Annette Benemann and Simone Pöschel is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hecker.

Additional information

Milica Stojakovic and Robert Krzesz contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Primer sequences and PCR conditions. Asterisk real-time PCR primers). CCR7 Chemokine CC motif receptor 7, GAPDH glyceraldehyde-3-phophate dehydrogenase, MIP-2β macrophage inflammatory protein-2β, IL-1β interleukin-1β, MCP-1 monocyte chemoattractant protein 1, MMP-3 metalloproteinase 3, RPL32 ribosomal protein L32, VCAM-1 vascular cell adhesion molecule-1. Primer pairs used were specific for the human variant of the listed genes (PDF 85 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stojakovic, M., Krzesz, R., Wagner, A.H. et al. CD154-stimulated GM-CSF release by vascular smooth muscle cells elicits monocyte activation—role in atherogenesis. J Mol Med 85, 1229–1238 (2007). https://doi.org/10.1007/s00109-007-0225-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0225-y

Keywords

Navigation