Skip to main content

Advertisement

Log in

Turning back the clock: regression of abdominal aortic aneurysms via pharmacotherapy

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Abdominal aortic aneurysm (AAA) is a common disease that causes progressive expansion and rupture of the aorta with high mortality. There is a large and unmet need for nonsurgical treatment for AAA. Research has shown that an intricate network of inflammatory cells and interstitial cells contributes to the formation of AAA by producing pro-inflammatory mediators that activate enzymes to degrade the extracellular matrix (ECM) and impair ECM biosynthesis. Pharmacological agents such as statins and angiotensin-converting enzyme inhibitors may promote tissue stabilization in AAA by diminishing pro-inflammatory signaling and normalizing metabolism of the ECM. Our recent experiments in animal models demonstrate that inhibition of c-Jun N terminal kinase (JNK) inhibits multiple pathological processes and causes regression of established AAA. Thus, emerging evidence indicates that pharmacological intervention targeting pro-inflammatory signaling and abnormal ECM metabolism is a promising strategy for treatment of AAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Curci JA, Lee JK, Thompson RW (2001) Pathogenesis of abdominal aortic aneurysm. In: Ernst CB, Stanley JC (eds) Current therapy in vascular surgery. Elsevier, Philadelphia, pp 199–206

    Google Scholar 

  2. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WR, Olin JW, Puschett JB, Rosenfield KA, Sacks D, Stanley JC, Taylor LM Jr, White CJ, White J, White RA, Antman EM, Smith SC Jr, Adams CD, Anderson JL, Faxon DP, Fuster V, Gibbons RJ, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B (2006) ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (writing committee to develop guidelines for the management of patients with peripheral arterial disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 113:e463–654

    Article  PubMed  Google Scholar 

  3. Participants UKSAT (2002) Long-term outcomes of immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med 346:1445–1452

    Article  Google Scholar 

  4. Lederle FA, Wilson SE, Johnson GR, Reinke DB, Littooy FN, Acher CW, Ballard DJ, Messina LM, Gordon IL, Chute EP, Krupski WC, Busuttil SJ, Barone GW, Sparks S, Graham LM, Rapp JH, Makaroun MS, Moneta GL, Cambria RA, Makhoul RG, Eton D, Ansel HJ, Freischlag JA, Bandyk D (2002) Immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med 346:1437–1444

    Article  PubMed  Google Scholar 

  5. Cao P, Collaborators CT (2005) Comparison of surveillance vs aortic endografting for small aneurysm repair (CAESAR) trial: study design and progress. Eur J Vasc Endovasc Surg 30:245–251

    Article  PubMed  CAS  Google Scholar 

  6. Yoshimura K, Aoki H, Ikeda Y, Fujii K, Akiyama N, Furutani A, Hoshii Y, Tanaka N, Ricci R, Ishihara T, Esato K, Hamano K, Matsuzaki M (2005) Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med 11:1330–1338

    Article  PubMed  CAS  Google Scholar 

  7. Bergoeing MP, Thompson RW, Curci JA (2006) Pharmacological targets in the treatment of abdominal aortic aneurysms. Expert Opin Ther Targets 10:547–559

    Article  PubMed  CAS  Google Scholar 

  8. Dawson J, Choke E, Sayed S, Cockerill G, Loftus I, Thompson MM (2006) Pharmacotherapy of abdominal aortic aneurysms. Curr Vasc Pharmacol 4:129–149

    Article  PubMed  CAS  Google Scholar 

  9. Curci JA, Baxter BT, Thompson RW (2005) Arterial aneurysms: etiologic considerations. In: Rutherford RB (ed) Vascular surgery. Saunders, Philadelphia, pp 475–492

    Google Scholar 

  10. van Vlijmen-van Keulen CJ, Pals G, Rauwerda JA (2002) Familial abdominal aortic aneurysm: a systematic review of a genetic background. Eur J Vasc Endovasc Surg 24:105–116

    Article  PubMed  Google Scholar 

  11. Golledge J, Muller J, Daugherty A, Norman P (2006) Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler Thromb Vasc Biol 26:2605–2613

    Article  PubMed  CAS  Google Scholar 

  12. Vammen S, Lindholt JS, Ostergaard L, Fasting H, Henneberg EW (2001) Randomized double-blind controlled trial of roxithromycin for prevention of abdominal aortic aneurysm expansion. Br J Surg 88:1066–1072

    Article  PubMed  CAS  Google Scholar 

  13. Gibbs R (2002) Randomized double-blind controlled trial of roxithromycin for prevention of abdominal aortic aneurysm expansion. Br J Surg 89:491–492

    Article  PubMed  CAS  Google Scholar 

  14. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    Article  PubMed  CAS  Google Scholar 

  15. Liao S, Miralles M, Kelley BJ, Curci JA, Borhani M, Thompson RW (2001) Suppression of experimental abdominal aortic aneurysms in the rat by treatment with angiotensin-converting enzyme inhibitors. J Vasc Surg 33:1057–1064

    Article  PubMed  CAS  Google Scholar 

  16. Hackam DG, Thiruchelvam D, Redelmeier DA (2006) Angiotensin-converting enzyme inhibitors and aortic rupture: a population-based case-control study. Lancet 368:659–665

    Article  PubMed  CAS  Google Scholar 

  17. Huffman MD, Curci JA, Moore G, Kerns DB, Starcher BC, Thompson RW (2000) Functional importance of connective tissue repair during the development of experimental abdominal aortic aneurysms. Surgery 128:429–438

    Article  PubMed  CAS  Google Scholar 

  18. Rowe D, McGoodwin E, Martin G, Grahn D (1977) Decreased lysyl oxidase activity in the aneurysm-prone, mottled mouse. J Biol Chem 252:939–942

    PubMed  CAS  Google Scholar 

  19. Bode MK, Mosorin M, Satta J, Risteli L, Juvonen T, Risteli J (2002) Increased amount of type III pN-collagen in AAA when compared with AOD. Eur J Vasc Endovasc Surg 23:413–420

    Article  PubMed  CAS  Google Scholar 

  20. Maki J, Rasanen J, Tikkanen H, Sormunen R, Makikallio K, Kivirikko K, Soininen R (2002) Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 106:2503–2509

    Article  PubMed  CAS  Google Scholar 

  21. Krettek A, Sukhova GK, Libby P (2003) Elastogenesis in human arterial disease: a role for macrophages in disordered elastin synthesis. Arterioscler Thromb Vasc Biol 23:582–587

    Article  PubMed  CAS  Google Scholar 

  22. Dobrin PB, Mrkvicka R (1994) Failure of elastin or collagen as possible critical connective tissue alterations underlying aneurysmal dilatation. Cardiovasc Surg 2:484–488

    PubMed  CAS  Google Scholar 

  23. Dobrin PB, Baker WH, Gley WC (1984) Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms. Arch Surg 119:405–409

    PubMed  CAS  Google Scholar 

  24. Pyo R, Lee JK, Shipley JM, Curci JA, Mao D, Ziporin SJ, Ennis TL, Shapiro SD, Senior RM, Thompson RW (2000) Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest 105:1641–1649

    PubMed  CAS  Google Scholar 

  25. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110:625–632

    Article  PubMed  CAS  Google Scholar 

  26. Curci JA, Thompson RW (2004) Adaptive cellular immunity in aortic aneurysms: cause, consequence, or context? J Clin Invest 114:168–171

    Article  PubMed  CAS  Google Scholar 

  27. Hance KA, Tataria M, Ziporin SJ, Lee JK, Thompson RW (2002) Monocyte chemotactic activity in human abdominal aortic aneurysms: role of elastin degradation peptides and the 67-kD cell surface elastin receptor. J Vasc Surg 35:254–261

    Article  PubMed  Google Scholar 

  28. Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD, Galin FS, Folkerts G, Nijkamp FP, Blalock JE (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12:317–323

    Article  PubMed  CAS  Google Scholar 

  29. Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G (2000) Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood 96:2673–2681

    PubMed  Google Scholar 

  30. Petrinec D, Liao S, Holmes DR, Reilly JM, Parks WC, Thompson RW (1996) Doxycycline inhibition of aneurysmal degeneration in an elastase-induced rat model of abdominal aortic aneurysm: preservation of aortic elastin associated with suppressed production of 92 kD gelatinase. J Vasc Surg 23:336–346

    Article  PubMed  CAS  Google Scholar 

  31. Miralles M, Wester W, Sicard GA, Thompson R, Reilly JM (1999) Indomethacin inhibits expansion of experimental aortic aneurysms via inhibition of the cox2 isoform of cyclooxygenase. J Vasc Surg 29:884–892; discussion 892–883

    Article  PubMed  CAS  Google Scholar 

  32. Walton LJ, Franklin IJ, Bayston T, Brown LC, Greenhalgh RM, Taylor GW, Powell JT (1999) Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation 100:48–54

    PubMed  CAS  Google Scholar 

  33. King VL, Trivedi DB, Gitlin JM, Loftin CD (2006) Selective cyclooxygenase-2 inhibition with celecoxib decreases angiotensin II-induced abdominal aortic aneurysm formation in mice. Arterioscler Thromb Vasc Biol 26:1137–1143

    Article  PubMed  CAS  Google Scholar 

  34. Zhao L, Moos MP, Grabner R, Pedrono F, Fan J, Kaiser B, John N, Schmidt S, Spanbroek R, Lotzer K, Huang L, Cui J, Rader DJ, Evans JF, Habenicht AJ, Funk CD (2004) The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat Med 10:966–973

    Article  PubMed  CAS  Google Scholar 

  35. Johanning JM, Franklin DP, Han DC, Carey DJ, Elmore JR (2001) Inhibition of inducible nitric oxide synthase limits nitric oxide production and experimental aneurysm expansion. J Vasc Surg 33:579–586

    Article  PubMed  CAS  Google Scholar 

  36. Armstrong PJ, Franklin DP, Carey DJ, Elmore JR (2005) Suppression of experimental aortic aneurysms: comparison of inducible nitric oxide synthase and cyclooxygenase inhibitors. Ann Vasc Surg 19:248–257

    Article  PubMed  Google Scholar 

  37. Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 11:1223–1230

    PubMed  CAS  Google Scholar 

  38. Villacorta L, Graca-Souza AV, Ricciarelli R, Zingg JM, Azzi A (2003) Alpha-tocopherol induces expression of connective tissue growth factor and antagonizes tumor necrosis factor-alpha-mediated downregulation in human smooth muscle cells. Circ Res 92:104–110

    Article  PubMed  CAS  Google Scholar 

  39. Verrecchia F, Tacheau C, Wagner EF, Mauviel A (2003) A central role for the JNK pathway in mediating the antagonistic activity of pro-inflammatory cytokines against transforming growth factor-beta-driven SMAD3/4-specific gene expression. J Biol Chem 278:1585–1593

    Article  PubMed  CAS  Google Scholar 

  40. Ha VT, Marshall MK, Elsas LJ, Pinnell SR, Yeowell HN (1994) A patient with Ehlers–Danlos syndrome type VI is a compound heterozygote for mutations in the lysyl hydroxylase gene. J Clin Invest 93:1716–1721

    PubMed  CAS  Google Scholar 

  41. Thompson RW, Baxter BT (1999) MMP inhibition in abdominal aortic aneurysms. Rationale for a prospective randomized clinical trial. Ann N Y Acad Sci 878:159–178

    Article  PubMed  CAS  Google Scholar 

  42. Prall AK, Longo GM, Mayhan WG, Waltke EA, Fleckten B, Thompson RW, Baxter BT (2002) Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice. J Vasc Surg 35:923–929

    Article  PubMed  Google Scholar 

  43. Bigatel DA, Elmore JR, Carey DJ, Cizmeci-Smith G, Franklin DP, Youkey JR (1999) The matrix metalloproteinase inhibitor BB-94 limits expansion of experimental abdominal aortic aneurysms. J Vasc Surg 29:130–138

    Article  PubMed  CAS  Google Scholar 

  44. Mosorin M, Juvonen J, Biancari F, Satta J, Surcel HM, Leinonen M, Saikku P, Juvonen T (2001) Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: a randomized, double-blind, placebo-controlled pilot study. J Vasc Surg 34:606–610

    Article  PubMed  CAS  Google Scholar 

  45. Baxter BT, Pearce WH, Waltke EA, Littooy FN, Hallett JW Jr, Kent KC, Upchurch GR Jr, Chaikof EL, Mills JL, Fleckten B, Longo GM, Lee JK, Thompson RW (2002) Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (Phase II) multicenter study. J Vasc Surg 36:1–12

    Article  PubMed  Google Scholar 

  46. Allaire E, Forough R, Clowes M, Starcher B, Clowes AW (1998) Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest 102:1413–1420

    PubMed  CAS  Google Scholar 

  47. Dobrin PB, Baumgartner N, Anidjar S, Chejfec G, Mrkvicka R (1996) Inflammatory aspects of experimental aneurysms. Effect of methylprednisolone and cyclosporine. Ann N Y Acad Sci 800:74–88

    Article  PubMed  CAS  Google Scholar 

  48. Lawrence DM, Singh RS, Franklin DP, Carey DJ, Elmore JR (2004) Rapamycin suppresses experimental aortic aneurysm growth. J Vasc Surg 40:334–338

    Article  PubMed  Google Scholar 

  49. Hingorani A, Ascher E, Scheinman M, Yorkovich W, DePippo P, Ladoulis CT, Salles-Cunha S (1998) The effect of tumor necrosis factor binding protein and interleukin-1 receptor antagonist on the development of abdominal aortic aneurysms in a rat model. J Vasc Surg 28:522–526

    Article  PubMed  CAS  Google Scholar 

  50. Ishibashi M, Egashira K, Zhao Q, Hiasa K, Ohtani K, Ihara Y, Charo IF, Kura S, Tsuzuki T, Takeshita A, Sunagawa K (2004) Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 24:e174–e178

    Article  PubMed  CAS  Google Scholar 

  51. Nakashima H, Aoki M, Miyake T, Kawasaki T, Iwai M, Jo N, Oishi M, Kataoka K, Ohgi S, Ogihara T, Kaneda Y, Morishita R (2004) Inhibition of experimental abdominal aortic aneurysm in the rat by use of decoy oligodeoxynucleotides suppressing activity of nuclear factor kappaB and ets transcription factors. Circulation 109:132–138

    Article  PubMed  CAS  Google Scholar 

  52. Parodi FE, Mao D, Ennis TL, Bartoli MA, Thompson RW (2005) Suppression of experimental abdominal aortic aneurysms in mice by treatment with pyrrolidine dithiocarbamate, an antioxidant inhibitor of nuclear factor-kappaB. J Vasc Surg 41:479–489

    Article  PubMed  Google Scholar 

  53. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Google Scholar 

  54. Lee JK, Borhani M, Ennis TL, Upchurch Jr GR, Thompson RW (2001) Experimental abdominal aortic aneurysms in mice lacking expression of inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 21:1393–1401

    PubMed  CAS  Google Scholar 

  55. Nagashima H, Aoka Y, Sakomura Y, Sakuta A, Aomi S, Ishizuka N, Hagiwara N, Kawana M, Kasanuki H (2002) A 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, cerivastatin, suppresses production of matrix metalloproteinase-9 in human abdominal aortic aneurysm wall. J Vasc Surg 36:158–163

    Article  PubMed  Google Scholar 

  56. Kalyanasundaram A, Elmore JR, Manazer JR, Golden A, Franklin DP, Galt SW, Zakhary EM, Carey DJ (2006) Simvastatin suppresses experimental aortic aneurysm expansion. J Vasc Surg 43:117–124

    Article  PubMed  Google Scholar 

  57. Steinmetz EF, Buckley C, Shames ML, Ennis TL, Vanvickle-Chavez SJ, Mao D, Goeddel LA, Hawkins CJ, Thompson RW (2005) Treatment with simvastatin suppresses the development of experimental abdominal aortic aneurysms in normal and hypercholesterolemic mice. Ann Surg 241:92–101

    PubMed  Google Scholar 

  58. Schouten O, van Laanen JH, Boersma E, Vidakovic R, Feringa HH, Dunkelgrun M, Bax JJ, Koning J, van Urk H, Poldermans D (2006) Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth. Eur J Vasc Endovasc Surg 32:21–26

    Article  PubMed  CAS  Google Scholar 

  59. da Cunha V, Tham DM, Martin-McNulty B, Deng G, Ho JJ, Wilson DW, Rutledge JC, Vergona R, Sullivan ME, Wang YX (2005) Enalapril attenuates angiotensin II-induced atherosclerosis and vascular inflammation. Atherosclerosis 178:9–17

    Article  PubMed  CAS  Google Scholar 

  60. Wilson WR, Evans J, Bell PR, Thompson MM (2005) HMG-CoA reductase inhibitors (statins) decrease MMP-3 and MMP-9 concentrations in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 30:259–262

    Article  PubMed  CAS  Google Scholar 

  61. Sukhija R, Aronow WS, Sandhu R, Kakar P, Babu S (2006) Mortality and size of abdominal aortic aneurysm at long-term follow-up of patients not treated surgically and treated with and without statins. Am J Cardiol 97:279–280

    Article  PubMed  Google Scholar 

  62. Allaire E, Muscatelli-Groux B, Guinault AM, Pages C, Goussard A, Mandet C, Bruneval P, Melliere D, Becquemin JP (2004) Vascular smooth muscle cell endovascular therapy stabilizes already developed aneurysms in a model of aortic injury elicited by inflammation and proteolysis. Ann Surg 239:417–427

    Article  PubMed  Google Scholar 

  63. Dai J, Losy F, Guinault AM, Pages C, Anegon I, Desgranges P, Becquemin JP, Allaire E (2005) Overexpression of transforming growth factor-beta1 stabilizes already-formed aortic aneurysms: a first approach to induction of functional healing by endovascular gene therapy. Circulation 112:1008–1015

    Article  PubMed  CAS  Google Scholar 

  64. Nataatmadja M, West J, West M (2006) Overexpression of transforming growth factor-beta is associated with increased hyaluronan content and impairment of repair in Marfan syndrome aortic aneurysm. Circulation 114:I371–377

    Article  PubMed  CAS  Google Scholar 

  65. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, Xu FL, Myers LA, Spevak PJ, Cameron DE, De Backer J, Hellemans J, Chen Y, Davis EC, Webb CL, Kress W, Coucke P, Rifkin DB, De Paepe AM, Dietz HC (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281

    Article  PubMed  CAS  Google Scholar 

  66. Rizzo RJ, McCarthy WJ, Dixit SN, Lilly MP, Shively VP, Flinn WR, Yao JS (1989) Collagen types and matrix protein content in human abdominal aortic aneurysms. J Vasc Surg 10:365–373

    Article  PubMed  CAS  Google Scholar 

  67. Buth J, Harris P (2005) Endovascular treatment of aortic aneurysms. In: Rutherford RB (ed) Vascular surgery. Elsevier, Philadelphia, pp 1452–1475

    Google Scholar 

  68. Sangiorgi G, D’Averio R, Mauriello A, Bondio M, Pontillo M, Castelvecchio S, Trimarchi S, Tolva V, Nano G, Rampoldi V, Spagnoli LG, Inglese L (2001) Plasma levels of metalloproteinases-3 and -9 as markers of successful abdominal aortic aneurysm exclusion after endovascular graft treatment. Circulation 104:I288–295

    PubMed  CAS  Google Scholar 

  69. Tung WS, Lee JK, Thompson RW (2001) Simultaneous analysis of 1176 gene products in normal human aorta and abdominal aortic aneurysms using a membrane-based complementary DNA expression array. J Vasc Surg 34:143–150

    Article  PubMed  CAS  Google Scholar 

  70. Yajima N, Masuda M, Miyazaki M, Nakajima N, Chien S, Shyy JY (2002) Oxidative stress is involved in the development of experimental abdominal aortic aneurysm: a study of the transcription profile with complementary DNA microarray. J Vasc Surg 36:379–385

    Article  PubMed  Google Scholar 

  71. Absi TS, Sundt TM 3rd, Tung WS, Moon M, Lee JK, Damiano RR Jr, Thompson RW (2003) Altered patterns of gene expression distinguishing ascending aortic aneurysms from abdominal aortic aneurysms: complementary DNA expression profiling in the molecular characterization of aortic disease. J Thorac Cardiovasc Surg 126:344–357; discussion 357

    Article  PubMed  CAS  Google Scholar 

  72. Gum R, Wang H, Lengyel E, Juarez J, Boyd D (1997) Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades. Oncogene 14:1481–1493

    Article  PubMed  CAS  Google Scholar 

  73. Lakka SS, Jasti SL, Kyritsis AP, Yung WK, Ali-Osman F, Nicolson GL, Rao JS (2000) Regulation of MMP-9 (type IV collagenase) production and invasiveness in gliomas by the extracellular signal-regulated kinase and jun amino-terminal kinase signaling cascades. Clin Exp Metastasis 18:245–252

    Article  PubMed  CAS  Google Scholar 

  74. Shin M, Yan C, Boyd D (2002) An inhibitor of c-jun aminoterminal kinase (SP600125) represses c-Jun activation, DNA-binding and PMA-inducible 92-kDa type IV collagenase expression. Biochim Biophys Acta 1589:311–316

    Article  CAS  Google Scholar 

  75. Wu C, Hsieh HL, Jou MJ, Yang CM (2004) Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1beta-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 90:1477–1488

    Article  PubMed  CAS  Google Scholar 

  76. Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr Opin Cell Biol 10:205–219

    Article  PubMed  CAS  Google Scholar 

  77. Manning AM, Davis RJ (2003) Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2:554–565

    Article  PubMed  CAS  Google Scholar 

  78. Daugherty A, Manning MW, Cassis LA (2000) Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 105:1605–1612

    Article  PubMed  CAS  Google Scholar 

  79. Sato H, Seiki M (1993) Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8:395–405

    PubMed  CAS  Google Scholar 

  80. Xiao W, Hodge DR, Wang L, Yang X, Zhang X, Farrar WL (2004) NF-kappaB activates IL-6 expression through cooperation with c-Jun and IL6-AP1 site, but is independent of its IL6-NFkappaB regulatory site in autocrine human multiple myeloma cells. Cancer Biol Ther 3:1007–1017

    Article  PubMed  CAS  Google Scholar 

  81. Wolf JS, Chen Z, Dong G, Sunwoo JB, Bancroft CC, Capo DE, Yeh NT, Mukaida N, Van Waes C (2001) IL (interleukin)-1alpha promotes nuclear factor-kappaB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas. Clin Cancer Res 7:1812–1820

    PubMed  CAS  Google Scholar 

  82. Papa S, Zazzeroni F, Pham CG, Bubici C, Franzoso G (2004) Linking JNK signaling to NF-kappaB: a key to survival. J Cell Sci 117:5197–5208

    Google Scholar 

  83. Schuringa JJ, Timmer H, Luttickhuizen D, Vellenga E, Kruijer W (2001) c-Jun and c-Fos cooperate with STAT3 in IL-6-induced transactivation of the IL-6 respone element (IRE). Cytokine 14:78–87

    Article  PubMed  CAS  Google Scholar 

  84. Leu JI, Crissey MA, Leu JP, Ciliberto G, Taub R (2001) Interleukin-6-induced STAT3 and AP-1 amplify hepatocyte nuclear factor 1-mediated transactivation of hepatic genes, an adaptive response to liver injury. Mol Cell Biol 21:414–424

    Article  PubMed  CAS  Google Scholar 

  85. Jovanovic DV, Martel-Pelletier J, Di Battista JA, Mineau F, Jolicoeur FC, Benderdour M, Pelletier JP (2000) Stimulation of 92-kd gelatinase (matrix metalloproteinase 9) production by interleukin-17 in human monocyte/macrophages: a possible role in rheumatoid arthritis. Arthritis Rheum 43:1134–1144

    Article  PubMed  CAS  Google Scholar 

  86. Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K (2003) JNK phosphorylates paxillin and regulates cell migration. Nature 424:219–223

    Article  PubMed  CAS  Google Scholar 

  87. Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M, Izumo S (2002) Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 277:10244–10250

    Article  PubMed  CAS  Google Scholar 

  88. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874

    Article  PubMed  CAS  Google Scholar 

  89. Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA (1998) Defective T cell differentiation in the absence of Jnk1. Science 282:2092–2095

    Article  PubMed  CAS  Google Scholar 

  90. Yang DD, Conze D, Whitmarsh AJ, Barrett T, Davis RJ, Rincon M, Flavell RA (1998) Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9:575–585

    Article  PubMed  CAS  Google Scholar 

  91. Xiong W, Zhao Y, Prall A, Greiner TC, Baxter BT (2004) Key roles of CD4+ T cells and IFN-gamma in the development of abdominal aortic aneurysms in a murine model. J Immunol 172:2607–2612

    PubMed  CAS  Google Scholar 

  92. Ricci R, Sumara G, Sumara I, Rozenberg I, Kurrer M, Akhmedov A, Hersberger M, Eriksson U, Eberli FR, Becher B, Boren J, Chen M, Cybulsky MI, Moore KJ, Freeman MW, Wagner EF, Matter CM, Luscher TF (2004) Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science 306:1558–1561

    Article  PubMed  CAS  Google Scholar 

  93. Sho E, Chu J, Sho M, Fernandes B, Judd D, Ganesan P, Kimura H, Dalman RL (2004) Continuous periaortic infusion improves doxycycline efficacy in experimental aortic aneurysms. J Vasc Surg 39:1312–1321

    Article  PubMed  Google Scholar 

  94. Camici GG, Steffel J, Akhmedov A, Schafer N, Baldinger J, Schulz U, Shojaati K, Matter CM, Yang Z, Luscher TF, Tanner FC (2006) Dimethyl sulfoxide inhibits tissue factor expression, thrombus formation, and vascular smooth muscle cell activation: a potential treatment strategy for drug-eluting stents. Circulation 114:1512–1521

    Article  PubMed  CAS  Google Scholar 

  95. Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, Swedenborg J (2003) Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg 38:1283–1292

    Article  PubMed  Google Scholar 

  96. Satta J, Laara E, Juvonen T (1996) Intraluminal thrombus predicts rupture of an abdominal aortic aneurysm. J Vasc Surg 23:737–739

    Article  PubMed  CAS  Google Scholar 

  97. Stenbaek J, Kalin B, Swedenborg J (2000) Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 20:466–469

    Article  PubMed  CAS  Google Scholar 

  98. Fontaine V, Jacob MP, Houard X, Rossignol P, Plissonnier D, Angles-Cano E, Michel JB (2002) Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol 161:1701–1710

    PubMed  CAS  Google Scholar 

  99. Yan L, Borregaard N, Kjeldsen L, Moses MA (2001) The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 276:37258–37265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank our collaborators. We regret that many excellent studies related to this topic could not be mentioned because of space limitations. This work was supported by: Grant-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (HA, KY, and MM), Japan Heart Foundation/Zeria Pharmaceutical Grant for Research on Cardiovascular Disease (HA), a New Frontier Project from Yamaguchi University (HA and KY), a grant from the Takeda Science Foundation (HA), and a grant from the Sankyo Company to the Department of Molecular Cardiovascular Biology, Yamaguchi University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Aoki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, H., Yoshimura, K. & Matsuzaki, M. Turning back the clock: regression of abdominal aortic aneurysms via pharmacotherapy. J Mol Med 85, 1077–1088 (2007). https://doi.org/10.1007/s00109-007-0213-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0213-2

Keywords

Navigation