Skip to main content
Log in

Mitochondrial channelopathies in aging

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Defects in ion channels (channelopathies) are increasingly found in a large spectrum of human pathologies including aging. Mutations in genes encoding ion channel proteins, which disrupt channel function, are the most commonly identified cause of channelopathies. Mutations in associated proteins, alterations in the expression of ion channels, or changes in the activity of non-mutated channel genes or associated proteins can also produce acquired channelopathies. Mitochondria, the powerhouse of the cells, are considered to be the most important cellular organelles to contribute to aging mainly because of their role in the production of reactive oxygen species in the initiation of apoptotic cell remodeling and in efficient ATP synthesis. During the past 50 years, multiple ion channels or transporters have been found in mitochondria, and the relationship between the activity of these channels and cellular aging, as well as the overall cellular biological function, has been intensively studied in a number of cell types and animal models. In this review, we discuss the better characterized mitochondrial ion channels whose dysfunction (mitochondrial channelopathies) may affect or accelerate the aging processes. These channels include the mitochondrial ATP-sensitive potassium channel (mitoKATP), Ca2+ transporters, voltage-dependent anion channel, and the mitochondrial permeability transition pore (mitoPTP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANT:

adenine nucleotide translocator

ATP:

adenine triphosphate

ETC:

electron transport chain

FAO:

fatty acid oxidation

mitoKATP :

mitochondrial ATP-sensitive potassium channel

OXPHOS:

oxidative phosphorylation

PTP:

permeability transition pore

ROS:

reactive oxygen species

VDAC:

voltage-dependent anion channel

VGCCs:

voltage-gated Ca2+ channels

TCA:

tricarboxylate cycle

CP:

cardioprotection

References

  1. Di Lisa F, Bernardi P (2005) Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res 66:222–232

    PubMed  Google Scholar 

  2. Lee TM, Su SF, Chou TF, Lee YT, Tsai CH (2002) Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation 105:334–340

    PubMed  CAS  Google Scholar 

  3. Jahangir A, Ozcan C, Holmuhamedov EL, Terzic A (2001) Increased calcium vulnerability of senescent cardiac mitochondria: protective role for a mitochondrial potassium channel opener. Mech Ageing Dev 122:1073–1086

    PubMed  CAS  Google Scholar 

  4. Pepe S (2000) Mitochondrial function in ischaemia and reperfusion of the ageing heart. Clin Exp Pharmacol Physiol 27:745–750

    PubMed  CAS  Google Scholar 

  5. Schulman D, Latchman DS, Yellon DM (2001) Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. Am J Physiol 281:H1630–H1636

    CAS  Google Scholar 

  6. Wang Y, Haider HK, Ahmad N, Ashraf M (2005) Mechanisms by which K(ATP) channel openers produce acute and delayed cardioprotection. Vascul Pharmacol 42:253–264

    PubMed  CAS  Google Scholar 

  7. O’Rourke B, Cortassa S, Aon MA (2005) Mitochondrial ion channels: gatekeepers of life and death. Physiology 20:303–315

    PubMed  CAS  Google Scholar 

  8. Hansford RG, Castro F (1982) Effect of senescence on Ca-ion transport by heart mitochondria. Mech Ageing Dev 19:5–13

    PubMed  CAS  Google Scholar 

  9. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155

    PubMed  CAS  Google Scholar 

  10. Carafoli E (2003) Historical review: mitochondria and calcium: ups and downs of an unusual relationship. Trends Biochem Sci 28:175–181

    PubMed  CAS  Google Scholar 

  11. Saris N-EL, Carafoli E (2005) A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc) 70:231–239

    Google Scholar 

  12. Trollinger DR, Cascio WE, Lemasters JJ (2000) Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca2+-indicating fluorophores. Biophys J 79:39–50

    PubMed  CAS  Google Scholar 

  13. Chacon E, Ohata H, Harper IS, Trollinger DR, Herman B, Lemasters JJ (1996) Mitochondrial free calcium transients during excitation–contraction coupling in rabbit cardiac myocytes. FEBS Lett 382:31–36

    PubMed  CAS  Google Scholar 

  14. Rudolf R, Mongillo M, Magalhaes PJ, Pozzan T (2004) In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166:527–536

    PubMed  CAS  Google Scholar 

  15. Panfili E, Sandri G, Sottocasa GL, Lunazzi G, Liut G, Graziosi G (1976) Specific inhibition of mitochondrial Ca2+ transport by antibodies directed to the Ca2+-binding glycoprotein. Nature 264:185–186

    PubMed  CAS  Google Scholar 

  16. Mironova GD, Sirota TV, Pronevich LA, Trofimenko NV, Mironov GP, Grigorjev PA, Kondrashova MN (1982) Isolation and properties of Ca2+-transporting glycoprotein and peptide from beef heart mitochondria. J Bioenerg Biomembr 14:213–225

    PubMed  CAS  Google Scholar 

  17. Zazueta C, Zafra G, Vera G, Sanchez C, Chavez E (1998) Advances in the purification of the mitochondrial Ca2+ uniporter using the labeled inhibitor 103Ru360. J Bioenerg Biomembr 30:489–498

    PubMed  CAS  Google Scholar 

  18. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    PubMed  CAS  Google Scholar 

  19. Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28:285–296

    PubMed  CAS  Google Scholar 

  20. Griffiths EJ, Ocampo CJ, Savage JS, Rutter GA, Hansford RG, Stern MD, Silverman HS (1998) Mitochondrial calcium transporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes. Cardiovasc Res 39:423–433

    PubMed  CAS  Google Scholar 

  21. Smets I, Caplanusi A, Despa S, Molnar Z, Radu M, VandeVen M, Ameloot M, Steels P (2004) Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol 286:F784–F794

    Article  CAS  Google Scholar 

  22. Shoshan-Barmatz V, Gincel D (2003) The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys 39:279–292

    PubMed  CAS  Google Scholar 

  23. Hajnoczky G, Csordas G, Yi M (2002) Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 32:363–377

    PubMed  CAS  Google Scholar 

  24. Vyssokikh M, Brdiczka D (2003) The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Bochim Pol 50:389–404

    CAS  Google Scholar 

  25. Nicholls DG (1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 176:463–474

    PubMed  CAS  Google Scholar 

  26. Villa A, Garcia-Simon MI, Blanco P, Sese B, Bogonez E, Satrustegui J (1998) Affinity chromatography purification of mitochondrial inner membrane proteins with calcium transport activity. Biochim Biophys Acta 1373:347–359

    PubMed  CAS  Google Scholar 

  27. Wang GJ, Thayer SA (2002) NMDA-induced calcium loads recycle across the mitochondrial inner membrane of hippocampal neurons in culture. J Neurophysiol 87:740–749

    PubMed  CAS  Google Scholar 

  28. Li W, Shariat-Madar Z, Powers M, Sun X, Lane RD, Garlid KD (1992) Reconstitution, identification, purification, and immunological characterization of the 110-kDa Na+/Ca2+ antiporter from beef heart mitochondria. J Biol Chem 267:17983–17989

    PubMed  CAS  Google Scholar 

  29. Paucek P, Jaburek M (2004) Kinetics and ion specificity of Na+/Ca2+ exchange mediated by the reconstituted beef heart mitochondrial Na+/Ca2+ antiporter. Biochim Biophys Acta 1659:83–91

    PubMed  CAS  Google Scholar 

  30. Zhu L, Yu Y, Chua BH, Ho YS, Kuo TH (2001) Regulation of sodium-calcium exchange and mitochondrial energetics by Bcl-2 in the heart of transgenic mice. J Mol Cell Cardiol 33:2135–2144

    PubMed  CAS  Google Scholar 

  31. Coll KE, Joseph SK, Corkey BE, Williamson JR (1982) Determination of the matrix free Ca2+ concentration and kinetics of Ca2+ efflux in liver and heart mitochondria. J Biol Chem 257:8696–8704

    PubMed  CAS  Google Scholar 

  32. Huser J, Rechenmacher CE, Blatter LA (1998) Imaging the permeability pore transition in single mitochondria. Biophys J 74:2129–2137

    PubMed  CAS  Google Scholar 

  33. Loew LM, Tuft RA, Carrington W, Fay FS (1993) Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys J 65:2396–2407

    Article  PubMed  CAS  Google Scholar 

  34. Hansford RG, Zorov D (1998) Role of mitochondrial calcium transport in the control of substrate oxidation. Mol Cell Biochem 184(1–2):359–369

    PubMed  CAS  Google Scholar 

  35. Das AM, Harris DA (1990) Control of mitochondrial ATP synthase in heart cells: inactive to active transitions caused by beating or positive inotropic agents. Cardiovasc Res 24:411–417

    PubMed  CAS  Google Scholar 

  36. Shannon TR, Bers DM (2004) Integrated Ca management in cardiac myocytes. Ann NY Acad Sci 1025:28–38

    Google Scholar 

  37. Miyata H, Silverman HS, Sollott SJ, Lakatta EG, Stern MD, Hansford RG (1991) Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. Am J Physiol 261:H1123–134

    PubMed  CAS  Google Scholar 

  38. Isenberg G, Han S, Schiefer A, Wendt-Gallitelli MF (1993) Changes in mitochondrial calcium concentration during the cardiac contraction cycle. Cardiovasc Res 27:1800–1809

    Article  PubMed  CAS  Google Scholar 

  39. Cheranov SY, Jaggar JH (2004) Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J Physiol 556:755–771

    PubMed  CAS  Google Scholar 

  40. Challet C, Maechler P, Wollheim CB, Ruegg UT (2001) Mitochondrial calcium oscillations in C2C12 myotubes. J Biol Chem 276:3791–3797

    PubMed  CAS  Google Scholar 

  41. Satrustegui J, Villalba M, Pereira R, Bogonez E, Martinez-Serrano A (1996) Cytosolic and mitochondrial calcium in synaptosomes during aging. Life Sci 59:429–434

    PubMed  CAS  Google Scholar 

  42. Xiong J, Verkhratsky A, Toescu EC (2002) Changes in mitochondrial status associated with altered Ca2+ homeostasis in aged cerebellar granule neurons in brain slices. J Neurosci 22:10761–10771

    PubMed  CAS  Google Scholar 

  43. Murchison D, Zawieja DC, Griffith WH (2004) Reduced mitochondrial buffering of voltage-gated calcium influx in aged rat basal forebrain neurons. Cell Calcium 36:61–75

    PubMed  CAS  Google Scholar 

  44. Vitorica J, Satrustegui J (1986) Involvement of mitochondria in the age-dependent decrease in calcium uptake of rat brain synaptosomes. Brain Res 378:36–48

    PubMed  CAS  Google Scholar 

  45. Nicholls DG (2004) Mitochondrial membrane potential and aging. Aging Cell 3:35–40

    PubMed  CAS  Google Scholar 

  46. Mather MW, Rottenberg H (2002) The inhibition of calcium signaling in T lymphocytes from old mice results from enhanced activation of the mitochondrial permeability transition pore. Mech Ageing Dev 123:707–724

    PubMed  CAS  Google Scholar 

  47. Kokoszka JE, Coskun P, Esposito LA, Wallace DC (2001) Increased mitochondrial oxidative stress in the Sod2 (+/−) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA 98:2278–2283

    PubMed  CAS  Google Scholar 

  48. Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY, Ames BN (1997) Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci USA 94:3064–3069

    PubMed  CAS  Google Scholar 

  49. Goodell S, Cortopassi G (1998) Analysis of oxygen consumption and mitochondrial permeability with age in mice. Mech Ageing Dev 101:245–256

    PubMed  CAS  Google Scholar 

  50. Mather M, Rottenberg H (2000) Aging enhances the activation of the permeability transition pore in mitochondria. Biochem Biophys Res Commun 273:603–608

    PubMed  CAS  Google Scholar 

  51. Koban MU, Moorman AF, Holtz J, Yacoub MH, Boheler KR (1998) Expressional analysis of the cardiac Na–Ca exchanger in rat development and senescence. Cardiovasc Res 37:405–423

    PubMed  CAS  Google Scholar 

  52. Drew B, Phaneuf S, Dirks A, Selman C, Gredilla R, Lezza A, Barja G, Leeuwenburgh C (2003) Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol 284:R474–R480

    CAS  Google Scholar 

  53. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102:5618–5623

    PubMed  CAS  Google Scholar 

  54. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 19:10771–10778

    Google Scholar 

  55. Piec I, Listrat A, Alliot J, Chambon C, Taylor RG, Bechet D (2005) Differential proteome analysis of aging in rat skeletal muscle. FASEB J 19:1143–1145

    CAS  Google Scholar 

  56. Vitorica J, Cano J, Satrustegui J, Machado A (1981) Comparison between developmental and senescent changes in enzyme activities linked to energy metabolism in rat heart. Mech Ageing Dev 16:105–116

    PubMed  CAS  Google Scholar 

  57. Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247

    PubMed  CAS  Google Scholar 

  58. Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD (1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem 267:26062–26069

    PubMed  CAS  Google Scholar 

  59. Mironova GD, Negoda AE, Marinov BS, Paucek P, Costa AD, Grigoriev SM, Skarga YY, Garlid KD (2004) Functional distinctions between the mitochondrial ATP-dependent K+ channel (mitoKATP) and its inward rectifier subunit (mitoKIR). J Biol Chem 279:32562–32568

    PubMed  CAS  Google Scholar 

  60. Ardehali H, O’Rourke B (2005) Mitochondrial K(ATP) channels in cell survival and death. J Mol Cell Cardiol 39:7–16

    PubMed  CAS  Google Scholar 

  61. Yarov-Yarovoy V, Paucek P, Jaburek M, Garlid KD (1997) The nucleotide regulatory sites on the mitochondrial KATP channel face the cytosol. Biochim Biophys Acta 1321:128–136

    PubMed  CAS  Google Scholar 

  62. Debska G, Kicinska A, Skalska J, Szewczyk A (2001) Intracellular potassium and chloride channels: an update. Acta Biochim Pol 48:137–144

    PubMed  CAS  Google Scholar 

  63. Singh H, Hudman D, Lawrence CL, Rainbow RD, Lodwick D, Norman RI (2003) Distribution of Kir6.0 and SUR2 ATP-sensitive potassium channel subunits in isolated ventricular myocytes. J Mol Cell Cardiol 35:445–459

    PubMed  CAS  Google Scholar 

  64. Lacza Z, Snipes JA, Kis B, Szabo C, Grover G, Busija DW (2003) Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain. Brain Res 994:27–36

    PubMed  CAS  Google Scholar 

  65. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O’Rourke B (2002) Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033

    PubMed  CAS  Google Scholar 

  66. Stowe DF, Aldakkak M, Camara AK, Riess ML, Heinen A, Varadarajan SG, Jiang MT (2006) Cardiac mitochondrial preconditioning by Big Ca2+-sensitive K+ channel opening requires superoxide radical generation. Am J Physiol 290:H434–H440

    CAS  Google Scholar 

  67. Li XQ, Hegazy MG, Mahdi F, Jezek P, Lane RD, Garlid KD (1990) Purification of reconstitutively active K+/H+ antiporter from rat liver mitochondria. J Biol Chem 265:15316–15322

    PubMed  CAS  Google Scholar 

  68. Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K+ channel in cardiac function and cardioprotection. Biochim Biophys Acta 1606:1–21

    PubMed  CAS  Google Scholar 

  69. Garlid KD, Paucek P (2003) Mitochondrial potassium transport: the K(+) cycle. Biochim Biophys Acta 1606:23–41

    PubMed  CAS  Google Scholar 

  70. Costa AD, Quinlan CL, Andrukhiv A, West IC, Jaburek M, Garlid KD (2006) The direct physiological effects of mitoKATP opening on heart mitochondria. Am J Physiol 290:H406–H415

    CAS  Google Scholar 

  71. Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Bioenergetic consequences of opening the ATP-sensitive K+ channel of heart mitochondria. Am J Physiol 280:H649–H657

    CAS  Google Scholar 

  72. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–H1576

    PubMed  CAS  Google Scholar 

  73. Szewczyk A, Wojcik G, Nalecz MJ (1995) Potassium channel opener, RP 66471, induces membrane depolarization of rat liver mitochondria. Biochem Biophys Res Commun 207:126–132

    PubMed  CAS  Google Scholar 

  74. Ranki HJ, Crawford RM, Budas GR, Jovanovic A (2002) Ageing is associated with a decrease in the number of sarcolemmal ATP-sensitive K+ channels in a gender-dependent manner. Mech Ageing Dev 123:695–705

    PubMed  CAS  Google Scholar 

  75. Fenton RA, Dickson EW, Meyer TE, Dobson JG Jr (2000) Aging reduces the cardioprotective effect of ischemic preconditioning in the rat heart. J Mol Cell Cardiol 32:1371–1375

    PubMed  CAS  Google Scholar 

  76. Lesnefsky EJ, Gallo DS, Ye J, Whittingham TS, Lust WD (1994) Aging increases ischemia-reperfusion injury in the isolated, buffer-perfused heart. J Lab Clin Med 124:843–851

    PubMed  CAS  Google Scholar 

  77. McCully JD, Toyoda Y, Wakiyama H, Rousou AJ, Parker RA, Levitsky S (2006) Age- and gender-related differences in ischemia/reperfusion injury and cardioprotection: effects of diazoxide. Ann Thorac Surg 82:117–123

    PubMed  Google Scholar 

  78. Tricarico D, Camerino DC (1994) ATP-sensitive K+ channels of skeletal muscle fibers from young adult and aged rats: possible involvement of thiol-dependent redox mechanisms in the age-related modifications of their biophysical and pharmacological properties. Mol Pharmacol 46:754–761

    PubMed  CAS  Google Scholar 

  79. Oldenburg O, Yang XM, Krieg T, Garlid KD, Cohen MV, Grover GJ, Downey JM (2003) P1075 opens mitochondrial KATP channels and generates reactive oxygen species resulting in cardioprotection of rabbit hearts. J Mol Cell Cardiol 35:1035–1042

    PubMed  CAS  Google Scholar 

  80. Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466

    PubMed  CAS  Google Scholar 

  81. McCubrey JA, Franklin RA (2006) Reactive oxygen intermediates and signaling through kinase pathways. Antioxid Redox Signal 2006:1745–1748

    Google Scholar 

  82. Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 12:2249–2270

    PubMed  CAS  Google Scholar 

  83. Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V (2005) The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 12:751–760

    PubMed  CAS  Google Scholar 

  84. Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517

    PubMed  CAS  Google Scholar 

  85. Halestrap AP, Brenner C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525

    PubMed  CAS  Google Scholar 

  86. Klingenberg M (1989) Molecular aspects of the adenine nucleotide carrier from mitochondria. Arch Biochem Biophys 270:1–14

    PubMed  CAS  Google Scholar 

  87. Halestrap AP, Kerr PM, Javadov S, Woodfield KY (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1366:79–94

    PubMed  CAS  Google Scholar 

  88. Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307:93–98

    PubMed  CAS  Google Scholar 

  89. Brustovetsky N, Klingenberg M (1996) Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry 35:8483–8488

    PubMed  CAS  Google Scholar 

  90. Ruck A, Dolder M, Wallimann T, Brdiczka D (1998) Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Lett 426:97–101

    PubMed  CAS  Google Scholar 

  91. Crompton M (2000) Mitochondrial intermembrane junctional complexes and their role in cell death. J Physiol 529:11–21

    PubMed  CAS  Google Scholar 

  92. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102:12005–12010

    PubMed  CAS  Google Scholar 

  93. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    PubMed  CAS  Google Scholar 

  94. Li Y, Johnson N, Capano M, Edwards M, Crompton M (2004) Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis. Biochem J 383:101–109

    PubMed  CAS  Google Scholar 

  95. Weiss JN, Korge P, Honda HM, Ping P (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93:292–301

    PubMed  CAS  Google Scholar 

  96. Ichas F, Jouaville LS, Sidash SS, Mazat JP, Holmuhamedov EL (1994) Mitochondrial calcium spiking: a transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling. FEBS Lett 348:211–215

    PubMed  CAS  Google Scholar 

  97. Kwak HB, Song W, Lawler JM (2006) Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J 2006;20:791–793

    Google Scholar 

  98. Dirks A, Leeuwenburgh C (2002) Apoptosis in skeletal muscle with aging. Am J Physiol 282:R519–R527

    CAS  Google Scholar 

  99. Lucas DT, Szweda LI (1998) Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci USA 95:510–514

    PubMed  CAS  Google Scholar 

  100. Sohal RS, Arnold LA, Sohal BH (1990) Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Radic Biol Med 9:495–500

    PubMed  CAS  Google Scholar 

  101. Yan LJ, Sohal RS (1998) Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci USA 95:12896–12901

    PubMed  CAS  Google Scholar 

  102. Nohl H, Kramer R (1980) Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech Ageing Dev 14:137–144

    PubMed  CAS  Google Scholar 

  103. Hashimoto M, Majima E, Goto S, Shinohara Y, Terada H (1999) Fluctuation of the first loop facing the matrix of the mitochondrial ADP/ATP carrier deuced from intermolecular cross linking of Cys56 residues by bifunctional dimaleimides. Biochemistry 38:1050–1056

    PubMed  CAS  Google Scholar 

  104. Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 19:419–421

    PubMed  CAS  Google Scholar 

  105. Chen JJ, Bertrand H, Yu BP (1995) Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radic Biol Med 19:583–590

    PubMed  CAS  Google Scholar 

  106. Kristal BS, Park BK, Yu BP (1996) 4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition. J Biol Chem 271:6033–6038

    PubMed  CAS  Google Scholar 

  107. Beckman JS, Koppenol WH (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844

    PubMed  CAS  Google Scholar 

  108. Kanski J, Behring A, Pelling J, Schoneich C (2005) Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol 288:H371–H381

    CAS  Google Scholar 

  109. Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F (2003) Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 278:33972–33977

    PubMed  CAS  Google Scholar 

  110. Madesh M, Hajnoczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1015

    PubMed  CAS  Google Scholar 

  111. Hoffman B, Stockl A, Schame M, Beyer K, Klingenberg M (1994) Reconstituted ADP/ATP carrier has an absolute requirement for cardiolipin as shown in cysteine mutants. J Biol Chem 269:1940–1949

    Google Scholar 

  112. Nehal M, Azam M, Baquer NZ (1990) Changes in the levels of catecholamines, hexokinase and glucose 6-phosphate dehydrogenase in red cell aging. Biochem Int 22:517–522

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pi, Y., Goldenthal, M.J. & Marín-García, J. Mitochondrial channelopathies in aging. J Mol Med 85, 937–951 (2007). https://doi.org/10.1007/s00109-007-0190-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0190-5

Keywords

Navigation