Skip to main content

Advertisement

Log in

Targeting of human renal tumor-derived endothelial cells with peptides obtained by phage display

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The phenotypic and molecular diversity of tumor-associated vasculature provides a basis for the development of targeted diagnostics and therapeutics. In the present study, we have developed a peptide-based targeting of human tumor endothelial cells (TEC) derived from renal carcinomas. We used a murine model of human tumor angiogenesis, in which TEC injected subcutaneously in severe combined immunodeficiency (SCID) mice organized in vascular structures connected with the mouse circulation, to screen in vivo a phage display library of random peptides. Using this approach, we identified cyclic peptides showing specific binding to TEC and not to normal human endothelial cells or to murine tumor endothelial cells. In particular, the peptide CVGNDNSSC (BB1) bound to TEC in vitro and in vivo. Using BB1 peptide conjugated with the ribosome-inactivating toxin saporin, we targeted TEC in vivo. Injection of BB1-saporin but not saporin alone or control modified BB-1ala saporin induced a selective cell apoptosis and disruption of the TEC vessel network. No increase in cell apoptosis was found in other murine organs. In conclusion, the identification of peptide sequences able to bind selectively human tumor-derived endothelial cells may represent a tool to deliver antiangiogenic or antitumor agents within the neoplastic vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Trepel M, Arap W, Pasqualini R (2002) In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol 6:399–404

    Article  PubMed  CAS  Google Scholar 

  2. Arap W, Kolonin MG, Trepel M, Lahdenranta J, Cardo-Vila M, Giordano RJ, Mintz PJ, Ardelt PU, Yao VJ, Vidal CI, Chen L, Flamm A, Valtanen H, Weavind LM, Hicks ME, Pollock RE, Botz GH, Bucana CD, Koivunen E, Cahill D, Troncoso P, Baggerly KA, Pentz RD, Do KA, Logothetis CJ, Pasqualini R (2002) Steps toward mapping the human vasculature by phage display. Nat Med 8:121–127

    Article  PubMed  CAS  Google Scholar 

  3. Garlanda C, Dejana E (1997) Heterogeneity of endothelial cells. Specific markers. Arterioscler Thromb Vasc Biol 17:1193–1202

    PubMed  CAS  Google Scholar 

  4. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  Google Scholar 

  5. Bussolati B, Deambrosis I, Russo S, Deregibus MC, Camussi G (2003) Altered angiogenesis and survival in endothelial cells derived from renal carcinoma. FASEB J 17:1159–1161

    PubMed  CAS  Google Scholar 

  6. Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC, Klagsbrun M (2004) Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 64:8249–8255

    Article  PubMed  CAS  Google Scholar 

  7. Grange C, Bussolati B, Bruno S, Fonsato V, Sapino A, Camussi G (2006) Isolation and characterization of human breast tumor-derived endothelial cells. Oncol Rep 15:381–386

    PubMed  CAS  Google Scholar 

  8. Pasqualini R, Arap W, McDonald DM (2002) Probing the structural and molecular diversity of tumor vasculature. Trends Mol Med 8:563–571

    Article  PubMed  CAS  Google Scholar 

  9. Burrows FJ, Thorpe PE (1994) Vascular targeting-a new approach to the therapy of solid tumors. Pharmacol Ther 64:155–174

    Article  PubMed  CAS  Google Scholar 

  10. Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  PubMed  CAS  Google Scholar 

  11. Rafii S, Avecilla ST, Jin DK (2003) Tumor vasculature address book: identification of stage-specific tumor vessel zip codes by phage display. Cancer Cell 4:331–333

    Article  PubMed  CAS  Google Scholar 

  12. Cooke SP, Boxer GM, Lawrence L, Pedley RB, Spencer DIR, Begent RHJ, Chester KA (2001) A strategy for antitumor vascular therapy by targeting the vascular endothelial growth factor: receptor complex. Cancer Res 61:3653–3659

    PubMed  CAS  Google Scholar 

  13. Yasukawa T, Kimura H, Tabata Y, Miyamoto H, Honda Y, Ikada Y, Ogura Y (2000) Active drug targeting with immunoconjugates to choroidal neovascularization. Curr Eye Res 21:952–961

    Article  PubMed  CAS  Google Scholar 

  14. Kamizuru H, Kimura H, Yasukawa T, Tabata Y, Honda Y, Ogura Y (2001) Monoclonal antibody-mediated drug targeting to choroidal neovascularization in the rat. Invest Ophthalmol Vis Sci 42:2664–2672

    PubMed  CAS  Google Scholar 

  15. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038

    Article  PubMed  CAS  Google Scholar 

  16. Curnis F, Arrigoni G, Sacchi A, Fischetti L, Arap W, Pasqualini R, Corti A (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62:867–874

    PubMed  CAS  Google Scholar 

  17. Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546

    Article  PubMed  CAS  Google Scholar 

  18. Burg MA, Pasqualini R, Arap W, Ruoslahti E, Stallcup WB (1999) NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 59:2869–2874

    PubMed  CAS  Google Scholar 

  19. Halin C, Rondini S, Nilsson F, Berndt A, Kosmehl H, Zardi L, Neri D (2002) Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 20:264–269

    Article  PubMed  CAS  Google Scholar 

  20. Li Z, Zhao R, Wu X, Sun Y, Yao M, Li J, Xu Y, Gu J (2005) Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J 19:1978–1985

    Article  PubMed  CAS  Google Scholar 

  21. Zhi M, Wu KC, Dong L, Hao ZM, Deng TZ, Hong L, Liang SH, Zhao PT, Qiao TD, Wang Y, Xu X, Fan DM (2004) Characterization of a specific phage-displayed peptide binding to vasculature of human gastric cancer. Cancer Biol Ther 3:1232–1235

    Article  PubMed  CAS  Google Scholar 

  22. Liang S, Lin T, Ding J, Pan Y, Dang D, Guo C, Zhi M, Zhao P, Sun L, Hong L, Shi Y, Yao L, Liu J, Wu K, Fan D (2006) Screening and identification of vascular-endothelial-cell-specific binding peptide in gastric cancer. J Mol Med 84:764–773

    Article  PubMed  CAS  Google Scholar 

  23. Oh Y, Mohiuddin I, Sun Y, Putnam JB Jr, Hong WK, Arap W, Pasqualini R (2005) Phenotypic diversity of the lung vasculature in experimental models of metastases. Chest 128:596S–600S

    Article  PubMed  Google Scholar 

  24. Lee L, Buckley C, Blades MC, Panayi G, George AJ, Pitzalis C (2002) Identification of synovium-specific homing peptides by in vivo phage display selection. Arthritis Rheum 46:2109–2120

    Article  PubMed  CAS  Google Scholar 

  25. Fonsato V, Buttiglieri S, Deregibus MC, Puntorieri V, Bussolati B, Camussi G (2006) Expression of Pax2 in human renal tumor-derived endothelial cells sustains apoptosis resistance and angiogenesis. Am J Pathol 168:706–713

    Article  PubMed  CAS  Google Scholar 

  26. Bussolati B, Grange C, Bruno S, Buttiglieri S, Deregibus MC, Tei L, Aime S, Camussi G (2006) Neural-cell adhesion molecule (NCAM) expression by immature and tumor-derived endothelial cells favors cell organization into capillary-like structures. Exp Cell Res 312:913–924

    Article  PubMed  CAS  Google Scholar 

  27. Bussolati B, Assenzio B, Deregibus MC, Camussi G (2006) The proangiogenic phenotype of human tumor-derived endothelial cells depends on thrombospondin-1 downregulation via phosphatidylinositol 3-kinase/Akt pathway. J Mol Med 84:852–863

    Article  PubMed  CAS  Google Scholar 

  28. Geninatti Crich S, Bussolati B, Tei L, Grange C, Esposito G, Lanzardo S, Camussi G, Aime S (2006) MR-visualization of Tumor Angiogenesis by targeting NCAM with the highly sensitive Gd-loaded Apoferritin probe. Cancer Res 66:9196–201

    Article  PubMed  CAS  Google Scholar 

  29. Biancone L, Stamenkovic I, Cantaluppi V, Boccellino M, De Martino A, Bussolino F, Camussi G (1999) Expression of L-selectin ligands by transformed endothelial cells enhances T cell-mediated rejection. J Immunol 162:5263–5269

    PubMed  CAS  Google Scholar 

  30. Line BR, Mitra A, Nan A, Ghandehari H (2005) Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates. J Nucl Med 46:1552–1560

    PubMed  CAS  Google Scholar 

  31. Hajitou A, Pasqualini R, Arap W (2006) Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med 16:80–88

    Article  PubMed  CAS  Google Scholar 

  32. Kerbel RS, Yu J, Tran J, Man S, Viloria-Petit A, Klement G, Coomber BL, Rak J (2001) Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 20:79–86

    Article  PubMed  CAS  Google Scholar 

  33. Bai F, Liang J, Wang J, Shi Y, Zhang K, Liang S, Hong L, Zhai H, Lu Y, Han Y, Yin F, Wu K, Fan D (2006) Inhibitory effects of a specific phage-displayed peptide on high peritoneal metastasis of gastric cancer. J Mol Med 85:169–180

    Article  PubMed  CAS  Google Scholar 

  34. Ellerby HM, Arap W Ellerby LM (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038

    Article  PubMed  CAS  Google Scholar 

  35. Fahr A, Muller K, Nahde T, Muller R, Brusselbach S (2002) A new colloidal lipidic system for gene therapy. J Liposome Res 12:37–44

    Article  PubMed  CAS  Google Scholar 

  36. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester HJ, Weber WA, Schwaiger M (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 12:3942–3949

    Article  PubMed  CAS  Google Scholar 

  37. Nicklin SA, White SJ, Watkins SJ, Hawkins RE, Baker AH (2000) Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation 102:231–237

    PubMed  CAS  Google Scholar 

  38. Nicklin SA, Buening H, Dishart KL, de Alwis M, Girod A, Hacker U, Thrasher AJ, Ali RR, Hallek M, Baker AH (2001) Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Molec Ther 4:174–181

    Article  CAS  Google Scholar 

  39. White SJ, Nicklin SA, Buning H, Brosnan MJ, Leike K, Papadakis ED, Hallek M, Baker AH (2004) Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation 109:513–519

    Article  PubMed  CAS  Google Scholar 

  40. Hajitou A, Trepel M, Lilley CE, Soghomonyan S, Alauddin MM, Marini FC 3rd, Restel BH, Ozawa MG, Moya CA, Rangel R, Sun Y, Zaoui K, Schmidt M, von Kalle C, Weitzman MD, Gelovani JG, Pasqualini R, Arap W (2006) A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 125:385–398

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Italian Ministry of University and Research (MIUR): FIRB project (RBNE01HRS5-001) and COFIN; by the Associazione Italiana per la Ricerca sul Cancro (AIRC); by Regione Piemonte-Ricerca Scientifica Applicata and by Progetto S. Paolo Oncologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Camussi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussolati, B., Grange, C., Tei, L. et al. Targeting of human renal tumor-derived endothelial cells with peptides obtained by phage display. J Mol Med 85, 897–906 (2007). https://doi.org/10.1007/s00109-007-0184-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0184-3

Keywords

Navigation