Skip to main content
Log in

The impact of blood rheology on the molecular and cellular events underlying arterial thrombosis

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

There is an increasing appreciation of the importance of disturbed blood flow, especially turbulent flow, in the pathogenesis of vascular disease. However, the precise mechanism(s) by which rheological changes accelerate the atherothrombotic process remains incompletely understood. Atherosclerotic lesions typically develop in vascular regions exhibiting bifurcated or curved architectures. Such regions exhibit complex blood flow profiles with considerable divergence from uniform laminar flow. These altered flow behaviours can promote deposition of pro-atherogenic lipids and proteins to the vessel wall and modulate the adhesive function of endothelial, platelets and leukocytes. Once developed, atherosclerotic lesions can further exacerbate flow disturbances, establishing a potential hazardous cycle of accelerated atherogenesis. At the cellular level, alterations in fluid flow can lead to significant changes in signal transduction, leading to a variety of functional and morphological changes. In particular, disturbed rheology has a significant impact on the adhesion and activation mechanisms utilised by platelets and leukocytes with high shear, playing an important role in accelerating platelet activation and thrombus growth. This review focuses on the impact of blood rheology on the cellular and molecular events underlying thrombosis, with particular emphasis on the role of platelets in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

WSS:

wall shear stress

OSI:

oscillatory shear index

vWf:

von Willebrand factor

AFM:

atomic force microscopy

CFD:

computational fluid dynamics

References

  1. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Phys Rev 75(3):519–551

    CAS  Google Scholar 

  2. Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 259(4):381–392

    Article  PubMed  CAS  Google Scholar 

  3. Kleinstreuer C, Hyun S, Buchanan JR Jr, Longest PW, Archie JP Jr, Truskey GA (2001) Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng 29(1):1–64

    PubMed  CAS  Google Scholar 

  4. Davies PF, Polacek DC, Shi C, Helmke BP (2002) The convergence of haemodynamics, genomics, and endothelial structure in studies of the focal origin of atherosclerosis. Biorheology 39(3–4):299–306

    PubMed  CAS  Google Scholar 

  5. Turitto VT, Hall CL (1998) Mechanical factors affecting hemostasis and thrombosis. Thombosis Res 92:S25–S31

    Article  CAS  Google Scholar 

  6. David T, Thomas S, Walker PG (2001) Platelet deposition in stagnation point flow: an analytical and computational simulation. Med Eng Phys 23:299–312

    Article  PubMed  CAS  Google Scholar 

  7. Buchanan JR, Kleinstreuer C (1998) Simulation of particle-hemodynamics in a partially occluded artery segment with implications to the initiation of microemboli and secondary stenoses. Trans ASME 120:446–454

    Google Scholar 

  8. Hyun S, Kleinstreuer C, Archie JP (2000) Hemodynamics analyses of arterial expansions with implications to thrombosis and restenosis. Med Eng Phys 22:13–27

    Article  PubMed  CAS  Google Scholar 

  9. Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 259(4):381–392

    Article  PubMed  CAS  Google Scholar 

  10. Harrison DG, Widder J, Grumbach I, Chen W, Weber M, Searles C (2006) Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med 259(4):351–363

    Article  PubMed  CAS  Google Scholar 

  11. Tarbell JM, Weinbaum S, Kamm RD (2005) Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng 33(12):1719–1723

    Article  PubMed  Google Scholar 

  12. Davies F et al (2003) Spatial microstimuli in endothelial mechanosignaling. Circ Res 92:359–370

    Article  PubMed  CAS  Google Scholar 

  13. Bao X, Clark CB, Frangos JA (2000) Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos and connexin 43. Am J Physiol 278:H1598–H1605

    CAS  Google Scholar 

  14. Bao X, Lu C, Frangos JA (1999) Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1. Arterioscler Thromb Vasc Biol 19:996–1003

    PubMed  CAS  Google Scholar 

  15. Frangos JA, Huang TY, Clark CB (1996) Steady shear and step changes in shear stimulate endothelium via independent mechanisms—superposition of transient and sustained nitric oxide production. Biochem Biophys Res Commun 224:660–665

    Article  PubMed  CAS  Google Scholar 

  16. Kuchan MJ, Frangos JA (1994) Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol 266:C628–C636

    PubMed  CAS  Google Scholar 

  17. Blackman BR, Barbee KA, Thibault LE (2000) In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Ann Biomed Eng 28:363–372

    Article  PubMed  CAS  Google Scholar 

  18. Blackman BR, Thibault LE, Barbee KA (2000) Selective modulation of endothelial cell [Ca2+] response to flow by the onset rate of shear stress. J Biomech Eng 122:274–282

    Article  PubMed  CAS  Google Scholar 

  19. Blackman BR et al (2001) Cholesterol suppresses endothelial cell calcium response to shear stress. Ann Biomed Eng 26:S27

    Google Scholar 

  20. Gudi S, Nolan JP, Frangos JA (1998) Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc Natl Acad Sci USA 95:2515–2519

    Article  PubMed  CAS  Google Scholar 

  21. Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115(12):3378–3384

    Article  PubMed  CAS  Google Scholar 

  22. Robbie L, Libby P (2001) Inflammation and atherothrombosis. Ann NY Acad Sci 947:167–179

    Article  PubMed  CAS  Google Scholar 

  23. Pritchard WF et al (1995) Effects of wall shear stress and fluid recirculation on the localization of circulating monocytes in a three dimensional flow model. J Biomech 28:1459–1469

    Article  PubMed  CAS  Google Scholar 

  24. Ramos CL et al (1999) Direct demonstration of P-selectin and VCAM-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-deficient mice. Circ Res 84:1237–1244

    PubMed  CAS  Google Scholar 

  25. Ross R (1995) Cell biology of atherosclerosis. Ann Rev Phys 57:791–804

    Article  CAS  Google Scholar 

  26. Skilbeck CA et al (2004) Disturbed flow promotes deposition of leucocytes from flowing whole blood in a model of a damaged vessel wall. Br J Haematol 126:418–427

    Article  PubMed  Google Scholar 

  27. Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8(11):1227–1234

    Article  PubMed  CAS  Google Scholar 

  28. Bennett JS (2005) Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest 115(12):3363–3369

    Article  PubMed  CAS  Google Scholar 

  29. Goldsmith H, Mason S (1961) Axial migration of particles in poiseuille flow. Nature 190:1095–1096

    Article  Google Scholar 

  30. Massberg S et al (1999) Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. Blood 94(11):3829–3838

    PubMed  CAS  Google Scholar 

  31. Leduc C et al (1994) Adsorption of proteins out of plasma onto glass from a separated flow. J Biomater Sci Polym Ed 6(7):599–608

    PubMed  CAS  Google Scholar 

  32. Pfeiffer N et al (1998) Effects of secondary flow caused by a curved channel on plasma protein adsorption to artificial surfaces. Biotechnol Prog 14(2):338–342

    Article  PubMed  CAS  Google Scholar 

  33. Savage B, Sixma JJ, Ruggeri ZM (2002) Functional self-association of von Willebrand factor during platelet adhesion under flow. Proc Natl Acad Sci USA 99(1):425–430

    Article  PubMed  CAS  Google Scholar 

  34. Shankaran H, Alexandridis P, Neelamegham S (2003) Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood 101(7):2637–2645

    Article  PubMed  CAS  Google Scholar 

  35. Pfeiffer N et al (1998) Effects of secondary flow caused by a curved channel on plasma protein adsorption to artificial surfaces. Biotechnol Prog 14:338–342

    Article  PubMed  CAS  Google Scholar 

  36. Miyata S et al (1996) Conformational changes in the A1 domain of von Willebrand factor modulating the interaction with platelet glycoprotein Ibalpha. J Biol Chem 271(15):9046–9053

    Article  PubMed  CAS  Google Scholar 

  37. Siedlecki CA et al (1996) Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 88(8):2939–2950

    PubMed  CAS  Google Scholar 

  38. Savage B, Almus-Jacobs F, Ruggeri ZM (1998) Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94(5):657–666

    Article  PubMed  CAS  Google Scholar 

  39. Nieswandt B, Watson SP (2003) Platelet-collagen interaction: is GPVI the central receptor? Blood 102(2):449–461

    Article  PubMed  CAS  Google Scholar 

  40. Ni H, Freedman J (2003) Platelets in hemostasis and thrombosis: role of integrins and their ligands. Transfus Apher Sci 28(3):257–264

    Article  PubMed  Google Scholar 

  41. Savage B, Saldivar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84(2):289–297

    Article  PubMed  CAS  Google Scholar 

  42. Kroll MH et al (1996) Platelets and shear stress. Blood 88(5):1525–1541

    PubMed  CAS  Google Scholar 

  43. Brown CH 3rd et al (1975) Morphological, biochemical, and functional changes in human platelets subjected to shear stress. J Lab Clin Med 86(3):462–471

    PubMed  Google Scholar 

  44. Kroll MH et al (1991) von Willebrand factor binding to platelet GpIb initiates signals for platelet activation. J Clin Invest 88(5):1568–1573

    Article  PubMed  CAS  Google Scholar 

  45. Nesbitt WS et al (2002) Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J Biol Chem 277(4):2965–2972

    Article  PubMed  CAS  Google Scholar 

  46. Kasirer-Friede A et al (2004) Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood 103(9):3403–3411

    Article  PubMed  CAS  Google Scholar 

  47. Gachet C (2006) Regulation of platelet functions by P2 receptors. Annu Rev Pharmacol Toxicol 46:277–300

    Article  PubMed  CAS  Google Scholar 

  48. Mahaut-Smith MP, Tolhurst G, Evans RJ (2004) Emerging roles for P2X1 receptors in platelet activation. Platelets 15(3):131–144

    Article  PubMed  CAS  Google Scholar 

  49. Hechler B et al (2003) A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med 198(4):661–667

    Article  PubMed  CAS  Google Scholar 

  50. Oury C et al (2003) Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 101(10):3969–3976

    Article  PubMed  CAS  Google Scholar 

  51. Mazzucato M et al (2002) Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood 100(8):2793–2800

    Article  PubMed  CAS  Google Scholar 

  52. Goncalves I et al (2005) Importance of temporal flow gradients and integrin alphaIIbbeta3 mechanotransduction for shear activation of platelets. J Biol Chem 280(15):15430–1547

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge Dr. Karlheinz Peter for useful discussions and feedback during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun P. Jackson.

Additional information

W. S. Nesbitt and P. Mangin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesbitt, W.S., Mangin, P., Salem, H.H. et al. The impact of blood rheology on the molecular and cellular events underlying arterial thrombosis. J Mol Med 84, 989–995 (2006). https://doi.org/10.1007/s00109-006-0101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0101-1

Keywords

Navigation