Skip to main content

Advertisement

Log in

Physiologic regulation of central and peripheral T cell tolerance: lessons for therapeutic applications

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Immunologic tolerance is a state of unresponsiveness that is specific for a particular antigen. The immune system has an extraordinary potential for making T cell and B cell that recognize and neutralize any chemical entity and microbe entering the body. Certainly, some of these T cells and B cells recognize self-components; therefore, cellular mechanisms have evolved to control the activity of these self-reactive cells and achieve immunological self-tolerance. The most important in vivo biological significance of mechanisms regulating self-tolerance is to prevent the immune system from mounting an attack against the host’s own tissues resulting in autoimmunity. This review summarizes recent developments in our understanding of T-helper cell tolerance and discusses how the new findings can be exploited to prevent and treat autoimmune diseases, allergy, cancer, and chronic infection, or establish donor-specific transplantation tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walker LS, Abbas AK (2002) The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2:11–19

    PubMed  CAS  Google Scholar 

  2. Nemazee D, Hogquist KA (2003) Antigen receptor selection by editing or downregulation of V(D)J recombination. Curr Opin Immunol 15:182–189

    PubMed  CAS  Google Scholar 

  3. Gotter J, Kyewski B (2004) Regulating self-tolerance by deregulating gene expression. Curr Opin Immunol 16:741–745

    PubMed  CAS  Google Scholar 

  4. Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG (2005) Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435:590–597

    PubMed  CAS  Google Scholar 

  5. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401

    PubMed  CAS  Google Scholar 

  6. Su MA, Anderson MS (2004) Aire: an update. Curr Opin Immunol 16:746–752

    PubMed  CAS  Google Scholar 

  7. McCarty N, Paust S, Ikizawa K, Dan I, Li X, Cantor H (2005) Signaling by the kinase MINK is essential in the negative selection of autoreactive thymocytes. Nat Immunol 6:65–72

    PubMed  CAS  Google Scholar 

  8. Bunin A, Khwaja FW, Kersh GJ (2005) Regulation of Bim by TCR signals in CD4/CD8 double-positive thymocytes. J Immunol 175:1532–1539

    PubMed  CAS  Google Scholar 

  9. Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, Sakihama T, Matsutani T, Negishi I, Nakatsuru S, Sakaguchi S (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426:454–460

    PubMed  CAS  Google Scholar 

  10. Zhou T, Cheng J, Yang P, Wang Z, Liu C, Su X, Bluethmann H, Mountz JD (1996) Inhibition of Nur77/Nurr1 leads to inefficient clonal deletion of self-reactive T cells. J Exp Med 183:1879–1892

    PubMed  CAS  Google Scholar 

  11. Dequiedt F, Van Lint J, Lecomte E, Van Duppen V, Seufferlein T, Vandenheede JR, Wattiez R, Kettmann R (2005) Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. J Exp Med 201:793–804

    PubMed  CAS  Google Scholar 

  12. Wong P, Barton GM, Forbush KA, Rudensky AY (2001) Dynamic tuning of T cell reactivity by self-peptide-major histocompatibility complex ligands. J Exp Med 193:1179–1187

    PubMed  CAS  Google Scholar 

  13. Smith K, Seddon B, Purbhoo MA, Zamoyska R, Fisher AG, Merkenschlager M (2001) Sensory adaptation in naive peripheral CD4 T cells. J Exp Med 194:1253–1261

    PubMed  CAS  Google Scholar 

  14. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee, KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    PubMed  CAS  Google Scholar 

  15. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547

    PubMed  CAS  Google Scholar 

  16. Egen JG, Allison JP (2002) Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16:23–35

    PubMed  CAS  Google Scholar 

  17. Darlington PJ, Baroja ML, Chau TA, Siu E, Ling V, Carreno BM, Madrenas J (2002) Surface cytotoxic T lymphocyte-associated antigen 4 partitions within lipid rafts and relocates to the immunological synapse under conditions of inhibition of T cell activation. J Exp Med 195:1337–1347

    PubMed  CAS  Google Scholar 

  18. Chikuma S, Imboden JB, Bluestone JA (2003) Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J Exp Med 197:129–135

    PubMed  CAS  Google Scholar 

  19. Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3:611–618

    PubMed  CAS  Google Scholar 

  20. Tivol EA, Boyd SD, McKeon S, Borriello F, Nickerson P, Strom TB, Sharpe AH (1997) CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J Immunol 158:5091–5094

    PubMed  CAS  Google Scholar 

  21. Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126

    PubMed  CAS  Google Scholar 

  22. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511

    PubMed  CAS  Google Scholar 

  23. Levin L, Tomer Y (2003) The etiology of autoimmune diabetes and thyroiditis: evidence for common genetic susceptibility. Autoimmun Rev 2:377–386

    PubMed  CAS  Google Scholar 

  24. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772

    PubMed  CAS  Google Scholar 

  25. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    PubMed  CAS  Google Scholar 

  26. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    PubMed  CAS  Google Scholar 

  27. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    PubMed  CAS  Google Scholar 

  28. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322

    PubMed  CAS  Google Scholar 

  29. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G, Bolstad AI, Svenungsson, Lundberg EI, Sturfelt G, Jonssen A, Truedsson L, Lima G, Alcocer-Varela J, Jonsson R, Gyllensten UB, Harley JB, Alarcon-Segovia D, Steinsson K, Alarcon-Riquelme ME (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669

    PubMed  CAS  Google Scholar 

  30. Nielsen C, Laustrup H, Voss A, Junker P, Husby S, Lillevang ST (2004) A putative regulatory polymorphism in PD-1 is associated with nephropathy in a population-based cohort of systemic lupus erythematosus patients. Lupus 13:510–516

    Article  PubMed  CAS  Google Scholar 

  31. Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, Hurchla MA, Zimmerman N, Sim J, Zang X, Murphy TL, Russell JH, Allison JP, Murphy KM (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4:670–679

    PubMed  CAS  Google Scholar 

  32. Krieg C, Han P, Stone R, Goularte OD, Kaye J (2005) Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J Immunol 175:6420–6427

    PubMed  CAS  Google Scholar 

  33. Otsuki N, Kamimura Y, Hashiguchi M, Azuma M (2006) Expression and function of the B and T lymphocyte attenuator (BTLA/CD272) on human T cells. Biochem Biophys Res Commun 344:1121–1127

    PubMed  CAS  Google Scholar 

  34. Schwartz RH (1997) T cell clonal anergy. Curr Opin Immunol 9:351–357

    PubMed  CAS  Google Scholar 

  35. Appleman LJ, Boussiotis VA (2003) T cell anergy and costimulation. Immunol Rev 191:1–20

    Google Scholar 

  36. Saito T, Yamasaki S (2003) Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol Rev 192:143–160

    PubMed  CAS  Google Scholar 

  37. Sloan-Lancaster J, Shaw AS, Rothbard JB, Allen PM (1994) Partial T cell signaling: Altered phospho-ζ and lack of Zap70 recruitment in APL-induced T cell anergy. Cell 79:913–922

    PubMed  CAS  Google Scholar 

  38. Madrenas J, Wange RL, Wange JR, Isakov N, Samelson LE, Germain RN (1995) ζ phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science 267:515–518

    PubMed  CAS  Google Scholar 

  39. Gajewski TF, Qian D, Fields P, Fitch FW (1994) Anergic T-lymphocyte clones have altered inositol phosphate, calcium and tyrosine kinase signaling pathways. Proc Natl Acad Sci USA 91:38–42

    PubMed  CAS  Google Scholar 

  40. Boussiotis VA, Barber DL, Lee BJ, Freeman GJ, Gribben JG, Nadler LM (1996) Differential association of protein tyrosine kinases with T cell receptor is linked to the induction of anergy and its prevention by B7 family-mediated costimulation. J Exp Med 184:365–376

    PubMed  CAS  Google Scholar 

  41. Fields PE, Gajewski TF, Fitch FW (1996) Blocked Ras activation in anergic CD4+ T cells. Science 271:1276–1278

    PubMed  CAS  Google Scholar 

  42. Li W, Whaley CD, Mondino A, Mueller DL (1996) Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science 271:1272–1276

    PubMed  CAS  Google Scholar 

  43. Boussiotis VA, Freeman GJ, Berezovskaya A, Barber DL, Nadler LM (1997) Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278:124–128

    PubMed  CAS  Google Scholar 

  44. Li L, Greenwald RJ, Lafuente EM, Tzachanis D, Berezovskaya A, Freeman, GJ, Sharpe AH, Boussiotis VA (2005) Rap1-GTP is a negative regulator of Th cell function and promotes the generation of CD4+CD103+ regulatory T cells in vivo. J Immunol 175:3133–3139

    PubMed  CAS  Google Scholar 

  45. Tzachanis D, Freeman GJ, Hirano N, van Puijenbroek AA, Delfs MW, Berezovskaya A, Nadler LM, Boussiotis VA (2001) Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol 2:1174–1182

    PubMed  CAS  Google Scholar 

  46. Tzachanis D, Appleman LJ, Van Puijenbroek AA, Berezovskaya A, Nadler LM, Boussiotis VA (2003) Differential localization and function of ADP-ribosylation factor-6 in anergic human T cells: a potential marker for their identification. J Immunol 171:1691–1696

    PubMed  CAS  Google Scholar 

  47. Safford M, Collins S, Lutz MA, Allen A, Huang CT, Kowalski J, Blackford A, Horton MR, Drake C, Schwartz RH, Powell JD (2005) Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol 6:472–480

    PubMed  CAS  Google Scholar 

  48. Boussiotis VA, Freeman GF, Taylor PA, Berezovskaya A, Grass I, Blazar BR, Nadler LM et al (2000) p27kip1 functions as an anergy factor inhibiting IL-2 transcription and clonal expansion of alloreactive human and murine helper T lymphocytes. Nat Med 6:290–297

    PubMed  CAS  Google Scholar 

  49. Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH (2001) CTLA4 regulates peripheral T cell tolerance in vivo. Immunity 14:145–155

    PubMed  CAS  Google Scholar 

  50. Appleman LJ, van Puijenbroek AA, Shu KM, Nadler LM, Boussiotis VA (2002) CD28 costimulation mediates down-regulation of p27(kip1) and cell cycle progression by activation of the PI3K/PKB signaling pathway in primary human T cells. J Immunol 168:2729–2736

    PubMed  CAS  Google Scholar 

  51. Sloan-Lancaster J, Steinberg TH, Allen PM (1996) Selective activation of the calcium signaling pathway by altered peptide ligands. J Exp Med 184:1525–1530

    PubMed  CAS  Google Scholar 

  52. Clipstone NA, Crabtree GR (1992) Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357:695–697

    PubMed  CAS  Google Scholar 

  53. Feske S, Giltnane J, Dolmetsch R, Staudt LM, Rao A (2001) Gene regulation mediated by calcium signals in T lymphocytes. Nat Immunol 2:316–324

    PubMed  CAS  Google Scholar 

  54. Macian F, Garcia-Cozar F, Im SH, Horton HF, Byrne MC, Rao A (2002) Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109:719–731

    PubMed  CAS  Google Scholar 

  55. Anandasabapathy N, Ford GS, Bloom D, Holness C, Paragas V, Seroogy C, Skrenta H, Hollenhorst M, Fathman CG, Soares L (2003) GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 18:535–547

    PubMed  CAS  Google Scholar 

  56. Heissmeyer V, Macian F, Im SH, Varma R, Feske S, Venuprasad K, Gu H, Liu YC, Dustin ML, Rao A (2004) Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol 5:255–265

    PubMed  CAS  Google Scholar 

  57. Liu YC (2004) Ubiquitin ligases and the immune response. Annu Rev Immunol 22:81–127

    PubMed  Google Scholar 

  58. Naramura M, Jang IK, Kole H, Huang F, Haines D, Gu H (2002) c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol 3:1192–1199

    PubMed  CAS  Google Scholar 

  59. Jeon MS, Atfield A, Venuprasad K, Krawczyk C, Sarao R, Elly C, Yang C, Arya S, Bachmaier K, Su L, Bouchard D, Jones R, Gronski M, Ohashi P, Wada T, Bloom D, Fathman CG, Liu YC, Penninger JM (2004) Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity 21:167–177

    PubMed  CAS  Google Scholar 

  60. Fang D, Elly C, Gao B, Fang N, Altman Y, Joazeiro C, Hunter T, Copeland N, Jenkins N, Liu YC (2002) Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat Immunol 3:281–287

    PubMed  CAS  Google Scholar 

  61. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    PubMed  CAS  Google Scholar 

  62. von Boehmer H (2005) Mechanisms of suppression by suppressor T cells. Nat Immunol 6:338–344

    Google Scholar 

  63. Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF (2001) Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 276:37672–37679

    PubMed  CAS  Google Scholar 

  64. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    PubMed  CAS  Google Scholar 

  65. Fontenot JD, Rudensky AY (2005) A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6:331–337

    PubMed  CAS  Google Scholar 

  66. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142–1151

    PubMed  CAS  Google Scholar 

  67. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    PubMed  CAS  Google Scholar 

  68. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21

    PubMed  CAS  Google Scholar 

  69. Blair PJ, Bultman SJ, Haas JC, Rouse BT, Wilkinson JE, Godfrey VL (1994) CD4+CD8 T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J Immunol 153:3764–3774

    PubMed  CAS  Google Scholar 

  70. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin DA, Annunziata N, Doetschman T (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    PubMed  CAS  Google Scholar 

  71. Gorelik L, Flavell RA (2000) Abrogation of TGFb signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–181

    PubMed  CAS  Google Scholar 

  72. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    PubMed  CAS  Google Scholar 

  73. Sakaguchi S (2003) The origin of FOXP3-expressing CD4+ regulatory T cells: thymus or periphery. J Clin Invest 112:1310–1312

    PubMed  CAS  Google Scholar 

  74. Khattri R, Kasprowicz D, Cox T, Mortrud M, Appleby MW, Brunkow ME, Ziegler SF, Ramsdell F (2001) The amount of scurfin protein determines peripheral T cell number and responsiveness. J Immunol 167:6312–6320

    PubMed  CAS  Google Scholar 

  75. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20

    PubMed  CAS  Google Scholar 

  76. Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25 T cells. J Clin Invest 112:1437–1443

    PubMed  CAS  Google Scholar 

  77. Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    PubMed  CAS  Google Scholar 

  78. Wallet MA, Sen P, Tisch R (2005) Immunoregulation of dendritic cells. Clin Med Res 3:166–175

    Article  PubMed  CAS  Google Scholar 

  79. Allavena P, Piemonti L, Longoni D, Bernasconi S, Stoppacciaro A, Ruco L, Mantovani A (1998) IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol 28:359–369

    PubMed  CAS  Google Scholar 

  80. Goerdt S, Orfanos CE (1999) Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10:137–142

    PubMed  CAS  Google Scholar 

  81. Powell TJ, Jenkins CD, Hattori R, MacPherson GG (2003) Rat bone marrow-derived dendritic cells, but not ex vivo dendritic cells, secrete nitric oxide and can inhibit T-cell proliferation. Immunology 109:197–208

    PubMed  CAS  Google Scholar 

  82. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Buhlman J, Xu J, Flavell RA, Korngofd R, Noelle R, Vallera DA (1997) Blockade of CD40 ligand-CD40 interaction impairs CD4+ T cell-mediated alloreactivity by inhibiting mature donor T cell expansion and function after bone marrow transplantation. J Immunol 158:29–39

    PubMed  CAS  Google Scholar 

  83. Guinan EC, Boussiotis VA, Neuberg D, LaVita Brennan L, Hirano N, Nadler LM, Gribben JG (1999) Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med 340:1704–1714

    PubMed  CAS  Google Scholar 

  84. Gao W, Demirci G, Strom TB, Li XC (2003) Stimulating PD-1-negative signals concurrent with blocking CD154 co-stimulation induces long-term islet allograft survival. Transplantation 76:994–999

    PubMed  CAS  Google Scholar 

  85. Blazar BR, Carreno BM, Panoskaltsis-Mortari A, Carter L, Iwai Y, Yagita H, Nishimura H, Taylor PA (2003) Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-gamma-dependent mechanism. J Immunol 171:1272–1277

    PubMed  CAS  Google Scholar 

  86. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL (2002) CD4(+)CD25(+) immunoregulatory T cells: new therapeutics for graft-versus-host disease. J Exp Med 196:401–406

    PubMed  CAS  Google Scholar 

  87. Taylor PA, Lees CJ, Blazar BR (2002) The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99:3493–3499

    PubMed  CAS  Google Scholar 

  88. Marie JC, Letterio JJ, Gavin M, Rudensky AY (2005) TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 201:1061–1067

    PubMed  CAS  Google Scholar 

  89. Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg FG, Higgins JP, Negrin RS, Fathman CG, Strober S (2005) Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 105:2220–2226

    PubMed  CAS  Google Scholar 

  90. Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, Taylor PA, McKinnon KP, Su L, Blazar BR, Serody JS (2005) Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood 106:3300–3307

    PubMed  CAS  Google Scholar 

  91. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S (2002) Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 196:389–399

    PubMed  CAS  Google Scholar 

  92. Joffre O, van Meerwijk JP (2006) CD4(+)CD25(+) regulatory T lymphocytes in bone marrow transplantation. Semin Immunol 18:128–135

    PubMed  CAS  Google Scholar 

  93. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, Negrin RS (2003) CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9:1144–1150

    PubMed  CAS  Google Scholar 

  94. Trenado A, Charlotte F, Fisson S, Yagello M, Klatzmann D, Salomon BL, Cohen JL (2003) Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest 112:1688–1696

    PubMed  CAS  Google Scholar 

  95. Hackstein H, Thomson AW (2004) Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 4:24–34

    PubMed  CAS  Google Scholar 

  96. Sato K, Yamashita N, Baba M, Matsuyama T (2003) Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood 101:3581–3589

    PubMed  CAS  Google Scholar 

  97. Nachbaur D, Kircher B (2005) Dendritic cells in allogeneic hematopoietic stem cell transplantation. Leuk Lymphoma 46:1387–1396

    PubMed  CAS  Google Scholar 

  98. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R, Kashyap A, Flowers ME, Lilleby K, Chauncey TR, Storb R, Appelbaum FR (2001) Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 344:175–181

    PubMed  CAS  Google Scholar 

  99. Mielcarek M, Martin PJ, Torok-Storb B (1997) Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Blood 89:1629–1634

    PubMed  CAS  Google Scholar 

  100. Mielcarek M, Graf L, Johnson G, Torok-Storb B (1998) Production of interleukin-10 by granulocyte colony-stimulating factor-mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation. Blood 92:215–222

    PubMed  CAS  Google Scholar 

  101. Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C (2000) Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95:2484–2490

    PubMed  CAS  Google Scholar 

  102. Blom B, Ligthart SJ, Schotte R, Spits H (2002) Developmental origin of pre-DC2. Hum Immunol 63:1072–1080

    PubMed  CAS  Google Scholar 

  103. Hagendorens MM, Ebo DG, Schuerwegh AJ, Huybrechs A, Van Bever HP, Bridts CH, De Clerck LS, Stevens WJ (2003) Differences in circulating dendritic cell subtypes in cord blood and peripheral blood of healthy and allergic children. Clin Exp Allergy 33:633–639

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassiliki A. Boussiotis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Boussiotis, V.A. Physiologic regulation of central and peripheral T cell tolerance: lessons for therapeutic applications. J Mol Med 84, 887–899 (2006). https://doi.org/10.1007/s00109-006-0098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0098-5

Keywords

Navigation