Skip to main content
Log in

Short-term activation of peroxysome proliferator-activated receptor β/δ increases fatty acid oxidation but does not restore insulin action in muscle cells from type 2 diabetic patients

  • Rapid Communication
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Defective fatty acid oxidation in skeletal muscle is one of the possible causes of insulin resistance. Peroxisome proliferator-activated receptor β activators are strong inducers of fatty acid oxidation. The aim of this study was to verify whether activation of fatty acid oxidation by PPARβ agonists in human skeletal muscle cells prepared from type 2 diabetic patients could improve the reduced responses to insulin that characterized this cell model. GW0742 (10 nM) significantly increased fatty acid oxidation and oxidative gene expression in myotubes prepared from both healthy subjects and type 2 diabetic patients. In cells from control subjects, incubation with the agonist for 48 h affected neither insulin-induced rate of glycogen synthesis nor the phosphorylation state of protein kinase B (PKB serine 473). Myotubes from type 2 diabetic patients displayed marked reduction in the effects of insulin on glycogen synthesis and on PKB phosphorylation. However, treatment with PPARβ agonists did not restore these defects. Therefore, these results indicate that induction of fatty acid oxidation with PPARβ activators during short-term exposition is not sufficient to correct for insulin resistance in muscle cells from type 2 diabetic patients. This suggests that additional studies are needed to better characterize the link between fatty acid oxidation and insulin sensitivity in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perseghin G (2005) Muscle lipid metabolism in the metabolic syndrome. Curr Opin Lipidol 16:416–420

    Article  PubMed  CAS  Google Scholar 

  2. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    Article  PubMed  CAS  Google Scholar 

  3. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M, Shulman GI (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593

    Article  PubMed  CAS  Google Scholar 

  4. Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236

    Article  PubMed  CAS  Google Scholar 

  5. Bouzakri K, Roques M, Gual P, Espinosa S, Guebre-Egziabher F, Riou JP, Laville M, Le Marchand-Brustel Y, Tanti JF, Vidal H (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325

    Article  PubMed  CAS  Google Scholar 

  6. Kase ET, Wensaas AJ, Aas V, Hojlund K, Levin K, Thoresen GH, Beck-Nielsen H, Rustan AC, Gaster M (2005) Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway. Diabetes 54:1108–1115

    Article  PubMed  CAS  Google Scholar 

  7. Gaster M, Rustan AC, Aas V, Beck-Nielsen H (2004) Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes. Diabetes 53:542–548

    Article  PubMed  CAS  Google Scholar 

  8. Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950

    Article  PubMed  CAS  Google Scholar 

  9. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100:8466–8471

    Article  PubMed  CAS  Google Scholar 

  10. Bonen A, Parolin ML, Steinberg GR, Calles-Escandon J, Tandon NN, Glatz JF, Luiken JJ, Heigenhauser GJ, Dyck DJ (2004) Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J 18:1144–1146

    PubMed  CAS  Google Scholar 

  11. Debard C, Laville M, Berbe V, Loizon E, Guillet C, Morio-Liondore B, Boirie Y, Vidal H (2004) Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of type 2 diabetic patients. Diabetologia 47:917–925

    Article  PubMed  CAS  Google Scholar 

  12. Luquet S, Lopez-Soriano J, Holst D, Fredenrich A, Melki J, Rassoulzadegan M, Grimaldi PA (2003) Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J 17:2299–2301

    PubMed  CAS  Google Scholar 

  13. Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, Watanabe M, Magoori K, Ioka RX, Tachibana K, Watanabe Y, Uchiyama Y, Sumi K, Iguchi H, Ito S, Doi T, Hamakubo T, Naito M, Auwerx J, Yanagisawa M, Kodama T, Sakai J (2003) Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A 100:15924–15929

    Article  PubMed  CAS  Google Scholar 

  14. Muoio DM, MacLean PS, Lang DB, Li S, Houmard JA, Way JM, Winegar DA, Corton JC, Dohm GL, Kraus WE (2002) Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR delta. J Biol Chem 277:26089–26097

    Article  PubMed  CAS  Google Scholar 

  15. Kramer DK, Al-Khalili L, Perrini S, Skogsberg J, Wretenberg P, Kannisto K, Wallberg-Henriksson H, Ehrenborg E, Zierath JR, Krook A (2005) Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator-activated receptor delta. Diabetes 54:1157–1163

    Article  PubMed  Google Scholar 

  16. Henry RR, Abrams L, Nikoulina S, Ciaraldi TP (1995) Insulin action and glucose metabolism in nondiabetic control and NIDDM subjects. Comparison using human skeletal muscle cell cultures. Diabetes 44:936–946

    Article  PubMed  CAS  Google Scholar 

  17. Rieusset J, Bouzakri K, Chevillotte E, Ricard N, Jacquet D, Bastard JP, Laville M, Vidal H (2004) Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes 53:2232–2241

    Article  PubMed  CAS  Google Scholar 

  18. Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D, Langin D (2003) Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 278:33370–33376

    Article  PubMed  CAS  Google Scholar 

  19. Al-Khalili L, Chibalin AV, Kannisto K, Zhang BB, Permert J, Holman GD, Ehrenborg E, Ding VD, Zierath JR, Krook A (2003) Insulin action in cultured human skeletal muscle cells during differentiation: assessment of cell surface GLUT4 and GLUT1 content. Cell Mol Life Sci 60:991–998

    PubMed  CAS  Google Scholar 

  20. Berger J, Leibowitz MD, Doebber TW, Elbrecht A, Zhang B, Zhou G, Biswas C, Cullinan CA, Hayes NS, Li Y, Tanen M, Ventre J, Wu MS, Berger GD, Mosley R, Marquis R, Santini C, Sahoo SP, Tolman RL, Smith RG, Moller DE (1999) Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem 274:6718–6725

    Article  PubMed  CAS  Google Scholar 

  21. Sznaidman ML, Haffner CD, Maloney PR, Fivush A, Chao E, Goreham D, Sierra ML, LeGrumelec C, Xu HE, Montana VG, Lambert MH, Willson TM, Oliver WR Jr, Sternbach DD (2003) Novel selective small molecule agonists for peroxisome proliferator-activated receptor delta (PPARdelta—synthesis and biological activity. Bioorg Med Chem Lett 13:1517–1521

    Article  PubMed  CAS  Google Scholar 

  22. Holst D, Luquet S, Nogueira V, Kristiansen K, Leverve X, Grimaldi PA (2003) Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle. Biochim Biophys Acta 1633:43–50

    PubMed  CAS  Google Scholar 

  23. Ukropcova B, McNeil M, Sereda O, de Jonge L, Xie H, Bray GA, Smith SR (2005) Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor. J Clin Invest 115:1934–1941

    Article  PubMed  CAS  Google Scholar 

  24. Gaster M, Rustan AC, Beck-Nielsen H (2005) Differential utilization of saturated palmitate and unsaturated oleate: evidence from cultured myotubes. Diabetes 54:648–656

    Article  PubMed  CAS  Google Scholar 

  25. Cha BS, Ciaraldi TP, Park KS, Carter L, Mudaliar SR, Henry RR (2005) Impaired fatty acid metabolism in type 2 diabetic skeletal muscle cells is reversed by PPARgamma agonists. Am J Physiol Endocrinol Metab 289:E151–E159

    Article  PubMed  CAS  Google Scholar 

  26. Chen MB, McAinch AJ, Macaulay SL, Castelli LA, O’Brien PE, Dixon JB, Cameron-Smith D, Kemp BE, Steinberg GR (2005) Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics. J Clin Endocrinol Metab 90:3665–3672

    Article  PubMed  CAS  Google Scholar 

  27. Nikoulina SE, Ciaraldi TP, Carter L, Mudaliar S, Park KS, Henry RR (2001) Impaired muscle glycogen synthase in type 2 diabetes is associated with diminished phosphatidylinositol 3-kinase activation. J Clin Endocrinol Metab 86:4307–4314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Peyrat, C. Urbain, and V. Berbe for excellent technical assistance. We also would like to thank Dr. D. Pruneau for helpful discussions and Merck Research Laboratories and GlaxoSmithKline for providing of PPARβ agonists. This work was supported in part by research grants from INSERM (PNRD 2004) and from Fournier Pharma (Daix, France). D. Cozzone and C. Debard are recipients of a doctoral fellowship from the Ministère de l’Enseignement Superieur et de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Vidal.

Additional information

C. Debard and D. Cozzone contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debard, C., Cozzone, D., Ricard, N. et al. Short-term activation of peroxysome proliferator-activated receptor β/δ increases fatty acid oxidation but does not restore insulin action in muscle cells from type 2 diabetic patients. J Mol Med 84, 747–752 (2006). https://doi.org/10.1007/s00109-006-0077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0077-x

Keywords

Navigation