Skip to main content
Log in

The lipid flux rheostat: implications of lipid trafficking pathways

  • Editorial
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351

    Article  PubMed  CAS  Google Scholar 

  2. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Hayden MR (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22:336–345

    Article  PubMed  CAS  Google Scholar 

  3. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denefle P, Assmann G (1999) Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22:352–355

    Article  PubMed  CAS  Google Scholar 

  4. Hovingh GK, de Groot E, van der SW, Boekholdt SM, Hutten BA, Kuivenhoven JA, Kastelein JJ (2005) Inherited disorders of HDL metabolism and atherosclerosis. Curr Opin Lipidol 16:139–145

    Article  PubMed  CAS  Google Scholar 

  5. Cohen JC, Wang Z, Grundy SM, Stoesz MR, Guerra R (1994) Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels. J Clin Invest 94:2377–2384

    Article  PubMed  CAS  Google Scholar 

  6. Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjaerg-Hansen A (2004) Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest 114:1343–1353

    Article  PubMed  CAS  Google Scholar 

  7. Frikke-Schmidt R, Sing CF, Nordestgaard BG, Tybjaerg-Hansen A (2004) Gender- and age-specific contributions of additional DNA sequence variation in the 5′ regulatory region of the APOE gene to prediction of measures of lipid metabolism. Hum Genet 115:331–345

    Article  PubMed  CAS  Google Scholar 

  8. Boadu E, Francis GA (2005) The role of vesicular transport in ABCA1-dependent lipid efflux and its connection with NPC pathways. J Mol Med DOI http://dx.doi.org/10.1007/s00109-005-0001-9

  9. Zannis VI, Chroni A, Krieger M (2006) Role of ApoA-I, ABCA1, and SR-BI in the biogenesis of HDL. J Mol Med DOI http://dx.doi.org/10.1007/s00109-005-0030-4

  10. Neufeld EB, Stonik JA, Demosky SJ Jr, Knapper CL, Combs CA, Cooney A, Comly M, Dwyer N, Blanchette-Mackie J, Remaley AT, Santamarina-Fojo S, Brewer HB Jr (2004) The ABCA1 transporter modulates late endocytic trafficking: insights from the correction of the genetic defect in Tangier disease. J Biol Chem 279:15571–15578

    Article  PubMed  CAS  Google Scholar 

  11. Choi HY, Karten B, Chan T, Vance JE, Greer WL, Heidenreich RA, Garver WS, Francis GA (2003) Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann–Pick type C disease. J Biol Chem 278:32569–32577

    Article  PubMed  CAS  Google Scholar 

  12. Feng B, Tabas I (2002) ABCA1-mediated cholesterol efflux is defective in free cholesterol-loaded macrophages. Mechanism involves enhanced ABCA1 degradation in a process requiring full NPC1 activity. J Biol Chem 277:43271–43280

    Article  PubMed  CAS  Google Scholar 

  13. Feng B, Zhang D, Kuriakose G, Devlin CM, Kockx M, Tabas I (2003) Niemann–Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis. Proc Natl Acad Sci U S A 100:10423–10428

    Article  PubMed  CAS  Google Scholar 

  14. Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, Yu N, Ansell BJ, Datta G, Garber DW, Fogelman AM (2005) Apolipoprotein A-I mimetic peptides. Arterioscler Thromb Vasc Biol 25:1325–1331

    Article  PubMed  CAS  Google Scholar 

  15. Remaley AT, Stonik JA, Demosky SJ, Neufeld EB, Bocharov AV, Vishnyakova TG, Eggerman TL, Patterson AP, Duverger NJ, Santamarina-Fojo S, Brewer HB Jr (2001) Apolipoprotein specificity for lipid efflux by the human ABCAI transporter. Biochem Biophys Res Commun 280:818–823

    Article  PubMed  CAS  Google Scholar 

  16. Stonik JA, Remaley AT, Demosky SJ, Neufeld EB, Bocharov A, Brewer HB (2004) Serum amyloid A promotes ABCA1-dependent and ABCA1-independent lipid efflux from cells. Biochem Biophys Res Commun 321:936–941

    Article  PubMed  CAS  Google Scholar 

  17. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M (1996) Identification of scavenger receptor SR-BI as a high-density lipoprotein receptor. Science 271:518–520

    Article  PubMed  CAS  Google Scholar 

  18. Krieger M (2001) Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest 108:793–797

    Article  PubMed  CAS  Google Scholar 

  19. Martinez LO, Jacquet S, Esteve JP, Rolland C, Cabezon E, Champagne E, Pineau T, Georgeaud V, Walker JE, Terce F, Collet X, Perret B, Barbaras R (2003) Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421:75–79

    Article  PubMed  CAS  Google Scholar 

  20. Chang SY, Park SG, Kim S, Kang CY (2002) Interaction of the C-terminal domain of p43 and the alpha subunit of ATP synthase. Its functional implication in endothelial cell proliferation. J Biol Chem 277:8388–8394

    Article  PubMed  CAS  Google Scholar 

  21. Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV (1999) Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A 96:2811–2816

    Article  PubMed  CAS  Google Scholar 

  22. Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ, Pizzo SV (2001) Endothelial cell surface F1–F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A 98:6656–6661

    Article  PubMed  CAS  Google Scholar 

  23. Beisiegel U, Weber W, Havinga JR, Ihrke G, Hui DY, Wernette-Hammond ME, Turck CW, Innerarity TL, Mahley RW (1988) Apolipoprotein E-binding proteins isolated from dog and human liver. Arteriosclerosis 8:288–297

    PubMed  CAS  Google Scholar 

  24. Mahley RW, Hui DY, Innerarity TL, Beisiegel U (1989) Chylomicron remnant metabolism. Role of hepatic lipoprotein receptors in mediating uptake. Arteriosclerosis 9:I14–I18

    PubMed  CAS  Google Scholar 

  25. Kramer W, Girbig F, Corsiero D, Pfenninger A, Frick W, Rhein M, Wendler W, Lottspeich F, Hochleitner EO, Orso E, Schmitz G (2004) Aminopeptidase N (CD13) is a molecular target of the cholesterol absorption inhibitor Ezetimibe in the enterocyte brush border membrane. J Biol Chem 2809(2):1306–1320

    Article  CAS  Google Scholar 

  26. Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, Crona JH, Davis HR Jr, Dean DC, Detmers PA, Graziano MP, Hughes M, Macintyre DE, Ogawa A, O’neill KA, Iyer SP, Shevell DE, Smith MM, Tang YS, Makarewicz AM, Ujjainwalla F, Altmann SW, Chapman KT, Thornberry NA (2005) The target of ezetimibe is Niemann–Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci U S A 102:8132–8137

    Article  PubMed  CAS  Google Scholar 

  27. Hasty AH, Plummer MR, Weisgraber KH, Linton MF, Fazio S, Swift LL (2005) The recycling of apolipoprotein E in macrophages: influence of HDL and apolipoprotein A-I. J Lipid Res 46:1433–1439

    Article  PubMed  CAS  Google Scholar 

  28. Heeren J, Grewal T, Laatsch A, Rottke D, Rinninger F, Enrich C, Beisiegel U (2003) Recycling of apoprotein E is associated with cholesterol efflux and high density lipoprotein internalization. J Biol Chem 278:14370–14378

    Article  PubMed  CAS  Google Scholar 

  29. Rees D, Sloane T, Jessup W, Dean RT, Kritharides L (1999) Apolipoprotein A-I stimulates secretion of apolipoprotein E by foam cell macrophages. J Biol Chem 274:27925–27933

    Article  PubMed  CAS  Google Scholar 

  30. van den EP, Garg S, Leon L, Brigl M, Leadbetter EA, Gumperz JE, Dascher CC, Cheng TY, Sacks FM, Illarionov PA, Besra GS, Kent SC, Moody DB, Brenner MB (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437:906–910

    Article  PubMed  CAS  Google Scholar 

  31. Morita SY, Nakano M, Sakurai A, Deharu Y, Vertut-Doi A, Handa T (2005) Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E. FEBS Lett 579:1759–1764

    Article  PubMed  CAS  Google Scholar 

  32. Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY, Tansley GH, Cohn JS, Hayden MR, Wellington CL (2004) Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem 279:41197–41207

    Article  PubMed  CAS  Google Scholar 

  33. Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X, Fryer JD, Kowalewski T, Holtzman DM (2004) ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 279:40987–40993

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Schmitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, G., Langmann, T. The lipid flux rheostat: implications of lipid trafficking pathways. J Mol Med 84, 262–265 (2006). https://doi.org/10.1007/s00109-006-0041-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0041-9

Navigation