Skip to main content

Advertisement

Log in

Protein transduction technology

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

With the elucidation of the human genome, exhaustive analysis of genomic data related to gene transcription and the structure and function of translated protein products has progressed rapidly. Delivery of proteins and their functional domains or inhibitory peptides directly into the cell is ideal to use this protein information and analyze associated physiological functions. Protein transduction technology, which controls cell function via direct delivery of a desired protein into the cell, involves fusing the protein with a special peptide sequence consisting of 10–20 amino acids, referred to as the protein transduction domain. The recent discovery that the protein transduction domain can also be inserted into various macromolecules heightens expectations in terms of development of novel advanced experimental tools and clinical reagents

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AntP :

Antennapedia transcription factor

BBB :

Blood-brain barrier

PKA :

Protein kinase A

PTD :

Protein transduction domain

References

  1. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  Google Scholar 

  2. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) Cell Internalization of the third helix of antennapedia homeodomain is receptor-independent. J Biol Chem 271:18188–18193

    Google Scholar 

  3. Elliott G, O’Hare P (1997) Intracellular trafficking and protein delivery by a herpesvirus structure protein. Cell 88:223–233

    Article  Google Scholar 

  4. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A 97:13003–13008

    Google Scholar 

  5. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Google Scholar 

  6. Matsushita M, Tomizawa K, Moriwaki A, Li ST, Terada H, Matsui H (2001) A high efficiency protein transduction system demonstrating the role of PKA in long lasting LTP. J Neurosci 21:6000–6007

    Google Scholar 

  7. Mai JC, Shen H, Watkins SC, Cheng T, Robbins PD (2002) Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem 277:30208–30218

    Google Scholar 

  8. Suzuki T, Futaki S, Niwa M, Tanaka S, Ueda K, Sugiura Y (2002) Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem 277:2437–2443

    Google Scholar 

  9. Tyagi M, Rusnati M, Presta M, Giacca M: Internalization of HIV-1 tat requires cell surface heparin sulfate proteoglycans. J Biol Chem 276:3254–3261:2001

  10. Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–1387

    Google Scholar 

  11. Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Google Scholar 

  12. Matsushita M, Noguchi H, Lu YF, Tomizawa K, Michiue H, Li ST, Hirose K, Bonner-Weir S, Matsui H (2004) Photo-acceleration of protein release from endosome in the protein transduction system. FEBS Lett 572:221–226

    Google Scholar 

  13. Fischer R, Kohler K, Fotin-Mleczek M, Brock R (2004) A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. J Biol Chem 279:12625–12635

    Google Scholar 

  14. Terada H, Matsushita M, Lu YF, Shirai T, Li ST, Tomizawa K, Moriwaki A, Nishio S, Date I, Ohmoto T, Matsui H (2003) Inhibition of excitatory neuronal cell death by cell-permeable calcineurin autoinhibitory peptide. J Neurochem 87:1145–1151

    Google Scholar 

  15. Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p-27Kip1 induces cell migration. Nat Med 4:1449–1452

    Google Scholar 

  16. Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D, Dowdy SF, Hruska KA (2000) Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem 275:11993–12002

    Google Scholar 

  17. Gallouzi IE, Steitz JA (2001) Delineation of mRNA export pathways by the use of cell-permeable peptides. Science 294:1895–1901

    Article  CAS  PubMed  Google Scholar 

  18. Schwarze SR, Ho A, Vocero-Akbani AM, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  CAS  PubMed  Google Scholar 

  19. Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G, Sessa WC (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6:1362–1367

    Google Scholar 

  20. Noguchi H, Matsushita M, Okitsu T, Moriwaki A, Tomizawa K, Kang S, Li ST, Kobayashi N, Matsumoto S, Tanaka K, Tanaka N, Matsui H (2004) A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat Med 10:305–309

    Google Scholar 

  21. Snyder EL, Meade BR, Saenz CC, Dowdy SF (2004) Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol 2:E36

    Google Scholar 

  22. Cao G, Pei W, Ge H, Liang Q, Luo Y, Sharp FR, Lu A, Ran R, Graham SH, Chen J (2002) In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J Neurosci 22:5423–5431

    CAS  PubMed  Google Scholar 

  23. Asoh S, Ohsawa I, Mori T, Katsura K, Hiraide T, Katayama Y, Kimura M, Ozaki D, Yamagata K, Ohta S (2002) Protection against ischemic brain injury by protein therapeutics. Proc Natl Acad Sci U S A 99:17107–17112

    Google Scholar 

  24. Jo D, Nashabi A, Doxsee C, Lin Q, Unutmaz D, Chen J, Ruley HE (2001) Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat Biotechnol 19:929–933

    Google Scholar 

  25. Yu BD, Becker-Hapak M, Snyder EL, Vooijs M, Denicourt C, Dowdy SF (2003) Distinct and nonoverlapping roles for pRB and cyclin D: cyclin-dependent kinases 4/6 activity in melanocyte survival. Proc Natl Acad Sci U S A 100:14881–14886

    Google Scholar 

  26. Pooga M, Soomets U, Hallbrink M, Valkna A, Saar K, Rezaei K, Kahl U, Hao JX, Xu XJ, Wiesenfeld-Hallin Z, Hokfelt T, Bartfai T, Langel U (1998) Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol 16:857–861

    Google Scholar 

  27. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  CAS  PubMed  Google Scholar 

  28. Eguchi A, Akuta T, Okuyama H, Senda T, Yokoi H, Inokuchi H, Fujita S, Hayakawa T, Takeda K, Hasegawa M, Nakanishi M (2001) Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem 276:26204–26210

    Google Scholar 

  29. Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 6:1253–1257

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Matsushita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushita, M., Matsui, H. Protein transduction technology. J Mol Med 83, 324–328 (2005). https://doi.org/10.1007/s00109-004-0633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0633-1

Keywords

Navigation