Skip to main content
Log in

Single nucleotide polymorphism map of five long-QT genes

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We screened a white population for single nucleotide polymorphisms (SNPs) in five long QT syndrome genes, namely, KCNQ1 (LQT1), HERG (LQT2), SCN5A (LQT3), KCNE1 (LQT5), and KCNE2 (LQT6). We found 35 SNPs, 10 of which have not been previously described. Ten SNPs were in KCNE1, six in HERG, eight in KCNQ1, four in KCNE2, and seven in SCN5A. Four SNPs were associated with QTc interval in our 141 subjects, one in KCNE1, one in KCNE2, and two in SCN5A. Two of these SNPs have not been described. We conclude that these five long QT syndrome genes contain common variants, some of which are associated with QTc interval in normal persons. We suggest that analysis of these SNPs in a much larger cohort would enable establishment of common haplotypes that are associated with QTc. These haplotypes could facilitate prediction of arrhythmia risk in the general population

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SNP :

Single-nucleotide polymorphism

References

  1. Motte G, Coumel P, Abitbol G, Dessertenne F, Slama R (1970) The long QT syndrome and syncope caused by spike torsades. Arch Mal Coeur Vaiss 63:831–853

    CAS  PubMed  Google Scholar 

  2. Yap YG, Camm AJ (2003) Drug induced QT prolongation and torsades de pointes. Heart 89:1363–1372

    Article  CAS  PubMed  Google Scholar 

  3. Kass RS, Moss AJ (2003) Long QT syndrome: novel insights into the mechanisms of cardiac arrhythmias. J Clin Invest 112:810–815

    Article  CAS  PubMed  Google Scholar 

  4. Al-Khatib SM, LaPointe NM, Kramer JM, Califf RM (2003) What clinicians should know about the QT interval. JAMA 10:290:2120–2120

    Google Scholar 

  5. Busjahn A, Knoblauch H, Faulhaber H-D, Uhlmann R, Hoehe M, Schuster H, Luft FC (1999) The QT interval is linked to two long-QT syndrome loci in normal subjects. Circulation 99:3161–3164

    CAS  PubMed  Google Scholar 

  6. Aydin A, Luft FC, Bahring S (2004) Validation of fluorescence-labeled artificial nonhuman sequences for single-strand conformation polymorphism mutation detection in familial hypercholesterolemia. Anal Biochem 324:16–21

    Article  CAS  PubMed  Google Scholar 

  7. Lange K (2002) Mathematical and statistical methods for genetic analysis. Springer, Berlin Heidelberg New York

  8. Sham PC, Cherny SS, Purcell S, Hewitt JK (2000) Power of linkage versus association analysis of quantitative traits, by use of variance-components models for sibship data. Am J Hum Genet 66:1616–1630

    Article  CAS  PubMed  Google Scholar 

  9. Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogne K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421 634–639

    Google Scholar 

  10. Ackerman MJ, Tester DJ, Jones GS, Will ML, Burrow CR, Curran ME (2003) Ethnic differences in cardiac potassium channel variants: implications for genetic susceptibility to sudden cardiac death and genetic testing for congenital long QT syndrome. Mayo Clin Proc 78:1479–1487

    CAS  PubMed  Google Scholar 

  11. Sesti F, Abbott GW, Wei J, Murray KT, Saksena S, Schwartz PJ, Priori SG, Roden DM, George AL Jr, Goldstein SA (2000) A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci U S A 97:10613–10618

    Article  CAS  PubMed  Google Scholar 

  12. Paulussen ADC, Gilissen RAHJ, Armstrong M, Doevendans PA, Verhasselt P, Smeets HJM, Schulze-Bahr E, Haverkamp W, Breithardt G, Cohen N, Aerssens J (2004) Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J Mol Med 82:182–188

    CAS  PubMed  Google Scholar 

  13. Yang P HKanki, Drolet B, Yang T, Wei J, Viswanathan PC, Hohnloser SH, Shimizu W, Schwartz PJ, Stanton M, Murray KT, Norris K, George AL Jr, Roden DM (2002) Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 105:1943–1948

    CAS  PubMed  Google Scholar 

  14. Bezzina CR, Verkerk AO Busjahn A, Jeron A, Erdmann J, Koopmann TT, Bhuiyan ZA, Wilders R, Mannens MM, Tan HL, Luft FC, Schunkert H, Wilde AA (2003) A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovasc Res 59:27–36

    Article  CAS  PubMed  Google Scholar 

  15. Fernandez D, Ghanta A, Kauffman GW, Sanguinetti MC (2003) Physicochemical features of the hERG channel drug binding site. J Biol Chem 279:10120–10127

    Article  PubMed  Google Scholar 

  16. Viswanathan PC, Benson DW, Balser JR (2003) A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. J Clin Invest 111:341–346

    Article  CAS  PubMed  Google Scholar 

  17. Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL Jr, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptacek LJ (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519

    Article  CAS  PubMed  Google Scholar 

  18. Laitinen PJ, Swan H, Kontula K (2003) Molecular genetics of exercise-induced polymorphic ventricular tachycardia: identification of three novel cardiac ryanodine receptor mutations and two common calsequestrin 2 amino-acid polymorphisms. Eur J Hum Genet 11:888–891

    Google Scholar 

  19. Knoblauch H, Bauerfeind A, Krähenbühl C, Daury A, Rohde K, Bejanin S, Essioux L, Schuster H, Luft FC, Reich J (2002) Common haplotypes in six lipid genes explain forty percent of the genetic variance in the general population. Hum Mol Genet 11:1477–1485

    Google Scholar 

  20. Knoblauch H, Bauerfeind A, Toliat M, Becker C, Luganskaja T, Günther U, Rohde K, Schuster H, Junghans C, Luft FC, Nürnberg P, Reich JG (2004) Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in high-density and low-density lipoprotein cholesterol. Hum Mol Genet (in press)

  21. Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, Jakes RW, Clayton D, Schafer AJ, O’Rahilly S, Wareham NJ (2003) Gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 1 (epub Oct 13)

  22. Dunnen JT den, Antonarakis SE (2001) Nomenclature for the description of human sequence variations. Hum Genet 109:121–124

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich C. Luft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydin, A., Bähring, S., Dahm, S. et al. Single nucleotide polymorphism map of five long-QT genes. J Mol Med 83, 159–165 (2005). https://doi.org/10.1007/s00109-004-0595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0595-3

Keywords

Navigation