Skip to main content
Log in

Calcineurin independent development of myocardial hypertrophy in transgenic rats overexpressing the mouse renin gene, TGR(mREN2)27

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Myocardial hypertrophy is an independent risk factor for development of heart failure. The intracellular calcium homeostasis is altered in myocardial hypertrophy, and recent studies in animal models have confirmed an interaction between the Ca2+/calmodulin-dependent calcineurin signaling cascade and development of cardiac hypertrophy. There is evidence for the involvement of various pathways in development of hypertrophy. A transgenic rat model overexpressing the mouse renin gene, TGR(mREN2)27 has been shown to progress profound cardiac hypertrophy, possibly due to a monogenetic disorder. However, the exact mode of action is not known. To study a possible involvement of calcineurin and its downstream pathway in development of cardiac hypertrophy in this transgenic rat model we measured the protein expression of marker proteins of the calcineurin cascade (calcineurin, NFAT-3, GATA-4) and calcineurin phosphatase activity and GATA-4 DNA binding in TGR (n=10) compared to age-matched Sprague-Dawley rats (n=10). In our study there was no significant difference in calcineurin activity between the transgenic hearts and the hearts of Sprague-Dawley rats. Furthermore, we found neither an increase in protein expression of calcineurin B nor a rise in nuclear translocated NFAT-3 DU. Interestingly, the protein expression of GATA-4 and its DNA binding activity were significantly higher in hypertrophied myocardium than in control hearts. In transgenic rats overexpressing the mouse renin gene and thereby developing pronounced cardiac hypertrophy [TGR(mREN2)27] we thus found no activation of calcineurin or its downstream pathway. However, the expression of the transcriptional factor GATA-4 and its DNA binding activity were significantly increased in hearts of transgenic rats. Thus GATA-4 seems to be a marker of hypertrophy independently of calcineurin activation, possibly activated by various pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DU :

Densitometric units

ERK :

Extracellular signal regulated kinase

MAP :

Mitogen-activated protein

NFAT :

Nuclear factor activated T cell

PCR :

Polymerase chain reaction

SPDR :

Sprague-Dawley rat

TGR :

TGR(mREN2)27 mouse

References

  1. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 322:1561–1566

    CAS  PubMed  Google Scholar 

  2. Ho KK, Levy D, Kannel WB, Pinsky JL (1993) The epidemiology of the heart failure. The Framingham study. J Am Coll Cardiol 22:6–13

    PubMed  Google Scholar 

  3. Dominguez LJ, Parrinello G, Amato P, Licata G (1999) Trend of congestive heart failure epidemiology: contrast with clinical trial results. Cardiology 44:801–8

    CAS  Google Scholar 

  4. Mably JD, Liew C (1996) Factors involved in cardiogenesis and the regulation of cardiac-specific gene expression. Circ Res 79:4–13

    CAS  PubMed  Google Scholar 

  5. Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61:70–76

    CAS  PubMed  Google Scholar 

  6. Beuckelmann DJ, Nabauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055

    CAS  PubMed  Google Scholar 

  7. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  CAS  PubMed  Google Scholar 

  8. Olson EN, Molkentin JD (1999) Prevention of cardiac hypertrophy by calcineurin inhibition: hope or hype? Circ Res 84:623–632

    PubMed  Google Scholar 

  9. Barinaga M (1998) Signalling path may lead to better heart-failure therapies. Science 280 383

    Google Scholar 

  10. Shimoyama M, Hayashi D, Takimoto E, Zou Y Oka T, Komuro I (1999) Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy. Circulation 100:2449–54

    CAS  PubMed  Google Scholar 

  11. Luo Z, Shyu KG, Gulaberto A, Walsh K (1998) Calcineurin inhibitors and cardiac hypertrophy. Nat Med 10:1092–1093

    Article  Google Scholar 

  12. Sugden PH (1999) Signalling in myocardial hypertrophy: life after calcineurin? Circ Res 84:633–646

    CAS  PubMed  Google Scholar 

  13. Lim HW, Molkentin JD (1999) Calcineurin and human heart failure. Nat Med 5:246–247

    Article  CAS  PubMed  Google Scholar 

  14. Tsao L, Neville C, Musaro A (2000) Revisiting calcineurin and human heart failure. Nat Med 6:2–3

    Article  CAS  PubMed  Google Scholar 

  15. Haq S, Molkentin JD (2001) Differential activation of signal transduction pathway in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677

    CAS  PubMed  Google Scholar 

  16. Molkentin JD, Olson EN (1997) GATA4: a novel transcriptional regulator of cardiac hypertrophy? Circulation 96:3833–35

    CAS  PubMed  Google Scholar 

  17. Xia Y, McMillin B, Lewis A, Moore M, Zhu WG, Williams RS, Kellems RE (2000) Electrical stimulation of neonatal cardiac myocytes activates the NFAT3 and GATA-4 pathway and up-regulates the adenylosuccinate synthetase 1 gene. J Biol Chem 275:1855–1863

    Google Scholar 

  18. Herzig TC, Jobe SM, Aoki H (1997) Angiotensin II type Iα receptor gene expression in the heart: AP-1 and GATA-4 participate in the responses to pressure overload. Proc Natl Acad Sci USA 94:7543–48

    Article  CAS  PubMed  Google Scholar 

  19. Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR (1997) Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275:1930–33

    Article  CAS  PubMed  Google Scholar 

  20. Liang QG, De Windt LJ, Witt SA, Molkentin JD (2001) The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J Biol Chem 276:30245–30253

    Google Scholar 

  21. Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Molkentin JD (1998) Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281:1690–93

    Article  CAS  PubMed  Google Scholar 

  22. Taigen T, De Windt LJ, Lim HW, Molkentin JD (2000) Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 97:1196–1201

    Article  CAS  PubMed  Google Scholar 

  23. Rothermel BA, McKinsey TA, Vega RB, Nicol RL, Williams RS (2001) Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 98:3328–3333

    Article  CAS  PubMed  Google Scholar 

  24. Rothermel BA, Vega RB, Williams RS (2003) The role of modulatory calcineurin-interacting proteins in calcineurin signalling. Trends Cardiovasc Med 13:15–21

    Article  CAS  PubMed  Google Scholar 

  25. Ding B Price RL, Borg TK, Weinberg EO Halloran PF, Lorell BH (1999) Pressure overload induces severe hypertrophy in mice treated with cyclosporin, an inhibitor of calcineurin. Circ Res 84:729–734

    CAS  PubMed  Google Scholar 

  26. Zhang W Kowal RC Rusnak F, Sikkink RA, Olson EN, Victor RG (1999) Failure of calcineurin inhibitors to prevent pressure-overload left ventricular hypertrophy in rats. Circ Res 84:722–728

    CAS  PubMed  Google Scholar 

  27. Bachmann S, Peters J, Engler E, Ganten D, Mullins J (1992) Transgenic rats carrying the mouse renin gene-morphological characterization of a low-renin hypertension model. Kidney Int 41:24–36

    CAS  PubMed  Google Scholar 

  28. Zhao Y, Bader M, Kreutz R, Fernandez-Alfonso M, Zimmermann F, Ganten U, Metzger R, Ganten D, Mullins JJ, Peters J (1993) Ontogenetic regulation of mouse Ren-2d renin gene in transgenic hypertensive rats, TGR(mREN2)27. Am J Physiol 265:699–707

    Google Scholar 

  29. Zobel C, Brixius K, Pietsch M, Munch G, Bolck B, Schwinger RH (1998) Unchanged sarcoplasmic reticulum Ca2+-ATPase activity, reduced Ca2+ sensitivity, and negative force-frequency relationship in transgenic rats overexpressing the mouse renin gene. J Mol Med 76:533–44

    Article  CAS  PubMed  Google Scholar 

  30. Zobel C, Brixius K, Frank K, Schwinger RH (1998) Effect of the Na+-channel modulator BDF 9148 on Ca2+-sensitivity and force of contraction of hypertrophic myocardium from transgene rats harboring the mouse Renin gene (TG (mREN2)27). Naunyn Schmiedebergs Arch Pharmacol 357:532–9

    CAS  PubMed  Google Scholar 

  31. Münch G, Boelck B, Karczewski P, Schwinger RH (2002) Evidence for calcineurin-mediated regulation of SERCA 2a activity in human myocardium. J Mol Cell Cardiol 34:321–34

    Article  PubMed  Google Scholar 

  32. Schwinger RH, Böhm M, Schmidt U, Erdmann E (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca (2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92:3220–8

    CAS  PubMed  Google Scholar 

  33. Deryckere F, Gannon F (1994) A one-hour minipreparation technique for extraction of DNA-binding proteins from animal tissues. Biotechniques 16:405

    CAS  PubMed  Google Scholar 

  34. Diedrichs H, Chi M, Boelck B, Schwinger RHG (2004) Increased regulatory activity of the calcineurin/NFAT pathway in human heart failure. Eur J Heart Fail 6:3–9

    Article  CAS  PubMed  Google Scholar 

  35. Schwarz B, Percy E, Gao XM, Dart AM, Richardt G, Du XJ (2003) Altered calcium transient and development of hypertrophy in beta2-adrenoceptor overexpressing mice with and without pressure overload. Eur J Heart Fail 5:131–6

    Article  CAS  PubMed  Google Scholar 

  36. Hasegawa K, Lee SJ, Jobe SM et al (1997) Cis-acting sequences that mediate induction of β-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation 96:3943–53

    CAS  PubMed  Google Scholar 

  37. Liang Q, Wiese RJ, Bueno OF, Dai Y-S, Markham BE, Molkentin JD (2001) The transcription factor GATA 4 is activated by extracellular signal-regulated kinase 1- and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol Cell Biol 21:7460–7469

    Article  CAS  PubMed  Google Scholar 

  38. Fu M, Xu S, Zhang J, Pang Y, Liu N, Su J, Tang C (1999) Involvement of calcineurin in angiotensin II-induced cardiomyocytes hypertrophy and cardiac fibroblast hyperplasia of rats. Heart Vessels 14:283–288

    CAS  PubMed  Google Scholar 

  39. Goldspink PH, McKinney RD, Kimball VA, Geenen DL, Buttrick PM (2001) Angiotensin II induced cardiac hypertrophy in vivo is inhibited by cyclosporine A in adult rats. Mol Cell Biochem 226–:83–88

  40. Yang TTC, Xiong QF, Enslen H, Chow CW (2002) Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases. Mol Cell Biol 22:3892–3904

    Article  CAS  PubMed  Google Scholar 

  41. Mitchell KD, Jacinto SM, Mullins JJ (1997) Proximal tubular fluid, kidney, and plasma levels of angiotensin II in hypertensive ren-2 transgenic rats. Am J Physiol 273:246–53

    Google Scholar 

  42. Bohm M, Lee M, Kreutz R, Kim S, Schinke M, Djavidani B, Wagner J, Kaling M, Wienen W, Bader M et al (1995) Angiotensin II receptor blockade in TGR(mREN2)27: effects of renin-angiotensin-system gene expression and cardiovascular functions. J Hypertens 13:891–9

    CAS  PubMed  Google Scholar 

  43. Langheinrich M, Lee MA, Bohm M, Pinto YM, Ganten D, Paul M (1996) The hypertensive Ren-2 transgenic rat TGR(mREN2)27 in hypertension research. Characteristics and functional aspects. Am J Hypertens 9:506–12

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi N, Saito Y, Kuwahara K, Harada M, Kishimoto I, Ogawa Y, Kawakami R, Nakagawa Y, Nakanishi M, Nakao K (2003) Angiotensin II-induced ventricular hypertrophy and extracellular signal-regulated kinase activation are suppressed in mice overexpressing brain natriuretic peptide in circulation. Hypertens Res 26:847–53

    Article  CAS  PubMed  Google Scholar 

  45. De Borst MH, Navis G, de Boer RA, Huitema S, Vis LM, van Gilst WH, van Goor H (2003) Specific MAP-kinase blockade protects against renal damage in homozygous TGR(mRen2)27 rats. Lab Invest 83:1761–70

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ernst und Berta Grimmke-Stiftung (to H.D. and R.H.G.S). We thank Katja Rösler for excellent technical assistance. The mouse renin gene overexpressing rats were generously provided by Prof. Martin Paul, Freie Universität Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Diedrichs.

Additional information

H. Diedrichs and C. Mei contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diedrichs, H., Mei, C., Frank, K.F. et al. Calcineurin independent development of myocardial hypertrophy in transgenic rats overexpressing the mouse renin gene, TGR(mREN2)27. J Mol Med 82, 688–695 (2004). https://doi.org/10.1007/s00109-004-0581-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0581-9

Keywords

Navigation