Skip to main content

Advertisement

Log in

Introduction of an N-terminal peptide of S100C/A11 into human cells induces apoptotic cell death

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

S100 proteins belong to the EF-hand Ca2+-binding protein family and are involved in the regulation of a variety of cellular processes. Individual S100 proteins are expressed in cell- and tissue-specific manners, and functional deterioration of S100 proteins leads to a number of human diseases, including cancer. We previously demonstrated that S100C/A11 was translocated to nuclei and inhibited DNA synthesis in human keratinocytes when exposed to high Ca2+. In the present study we examined the effects of synthetic partial peptides of S100C/A11 on human carcinoma cell lines. Only an N-terminal peptide with 19 amino acid residues (MAK19) showed cytotoxicity to the cell lines in dose- and time-dependent manners when introduced into cells by flanking the HIV-TAT protein transduction domain (TAT-MAK19). Pulse field electrophoresis revealed that DNA of the treated cells was partially degradated. Annexin V, a marker of cellular apoptosis, was detected in the cells treated with TAT-MAK19 by immunostaining and flow cytometry. The induction of apoptotic cell death was apparently independent of p53, p21WAF1/CIP1, and caspase activity, but treatment with TAT-MAK19 resulted in partial translocation of apoptosis-inducing factor (AIF) from the cytoplasm to nuclei. These results indicate that MAK19 induces apoptosis in human cell lines and may therefore lead to the establishment of a new molecular target for the treatment of human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AIF :

Apoptosis-inducing factor

z-VAD-fmk :

Benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone

References

  1. Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:d1356–d1368

    CAS  PubMed  Google Scholar 

  2. Donato R (1999) Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1450:191–231

    Article  CAS  PubMed  Google Scholar 

  3. Makino T, Takaishi M, Morohashi M, Huh NH (2001) Hornerin, a novel profilaggrin-like protein and differentiation-specific marker isolated from mouse skin. J Biol Chem 276:47445–47452

    Article  CAS  PubMed  Google Scholar 

  4. Ilg EC, Schafer BW, Heizmann CW (1996) Expression pattern of S100 calcium-binding proteins in human tumors. Int J Cancer 68:325–332

    Article  CAS  PubMed  Google Scholar 

  5. Maelandsmo GM, Florenes VA, Mellingsaeter T, Hovig E, Kerbel RS, Fodstad O (1997) Differential expression patterns of S100A2, S100A4 and S100A6 during progression of human malignant melanoma. Int J Cancer 74:464–469

    Article  CAS  PubMed  Google Scholar 

  6. Nagy N, Brenner C, Markadieu N, Chaboteaux C, Camby I, Schafer BW, Pochet R, Heizmann CW, Salmon I, Kiss R, Decaestecker C (2001) S100A2, a putative tumor suppressor gene, regulates in vitro squamous cell carcinoma migration. Lab Invest 81:599–612

    CAS  PubMed  Google Scholar 

  7. Komatsu K, Murata K, Kameyama M, Ayaki M, Mukai M, Ishiguro S, Miyoshi J, Tatsuta M, Inoue M, Nakamura H (2002) Expression of S100A6 and S100A4 in matched samples of human colorectal mucosa, primary colorectal adenocarcinomas and liver metastases. Oncology 63:192–200

    Article  CAS  PubMed  Google Scholar 

  8. El-Rifai W, Moskaluk CA, Abdrabbo MK, Harper J, Yoshida C, Riggins GJ, Frierson HF Jr, Powell SM (2002) Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res 62:6823–6826

    CAS  PubMed  Google Scholar 

  9. Hernan R, Fasheh R, Calabrese C, Frank AJ, Maclean KH, Allard D, Barraclough R, Gilbertson RJ (2003) ERBB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Res 63:140–148

    CAS  PubMed  Google Scholar 

  10. Sherbet GV, Lakshmi MS (1998) S100A4 (MTS1) calcium binding protein in cancer growth, invasion and metastasis. Anticancer Res 18:2415–2421

    CAS  PubMed  Google Scholar 

  11. Lloyd BH, Platt-Higgins A, Rudland PS, Barraclough R (1998) Human S100A4 (p9Ka) induces the metastatic phenotype upon benign tumour cells. Oncogene 17:465–473

    Article  CAS  PubMed  Google Scholar 

  12. Bjornland K, Winberg JO, Odegaard OT, Hovig E, Loennechen T, Aasen AO, Fodstad O, Maelandsmo GM (1999) S100A4 involvement in metastasis: deregulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in osteosarcoma cells transfected with an anti-S100A4 ribozyme. Cancer Res 59:4702–4708

    CAS  PubMed  Google Scholar 

  13. Takenaga K, Nakamura Y, Sakiyama S (1997) Expression of antisense RNA to S100A4 gene encoding an S100-related calcium-binding protein suppresses metastatic potential of high-metastatic Lewis lung carcinoma cells. Oncogene 14:331–337

    Article  CAS  PubMed  Google Scholar 

  14. Ambartsumian N, Klingelhofer J, Grigorian M, Christensen C, Kriajevska M, Tulchinsky E, Georgiev G, Berezin V, Bock E, Rygaard J, Cao R, Cao Y, Lukanidin E (2001) The metastasis-associated Mts1 (S100A4) protein could act as an angiogenic factor. Oncogene 20:4685–4695

    Article  CAS  PubMed  Google Scholar 

  15. Boni R, Heizmann CW, Doguoglu A, Ilg EC, Schafer BW, Dummer R, Burg G (1997) Ca (2+)-binding proteins S100A6 and S100B in primary cutaneous melanoma. J Cutan Pathol 24:76–80

    CAS  PubMed  Google Scholar 

  16. Hauschild A, Engel G, Brenner W, Glaser R, Monig H, Henze E, Christophers E (1999) S100B protein detection in serum is a significant prognostic factor in metastatic melanoma. Oncology 56:338–344

    Article  CAS  PubMed  Google Scholar 

  17. Millward TA, Heizmann CW, Schafer BW, Hemmings BA (1998) Calcium regulation of Ndr protein kinase mediated by S100 calcium-binding proteins. EMBO J 17:5913–5922

    Article  CAS  PubMed  Google Scholar 

  18. Liu D, Rudland PS, Sibson DR, Platt-Higgins A, Barraclough R (2000) Expression of calcium-binding protein S100A2 in breast lesions. Br J Cancer 83:1473–1479

    Article  CAS  PubMed  Google Scholar 

  19. Feng G, Xu X, Youssef EM, Lotan R (2001) Diminished expression of S100A2, a putative tumor suppressor, at early stage of human lung carcinogenesis. Cancer Res 61:7999–8004

    CAS  PubMed  Google Scholar 

  20. Boni R, Burg G, Doguoglu A, Ilg EC, Schafer BW, Muller B, Heizmann CW (1997) Immunohistochemical localization of the Ca2+ binding S100 proteins in normal human skin and melanocytic lesions. Br J Dermatol 137:39–43

    Article  CAS  PubMed  Google Scholar 

  21. Todoroki H, Kobayashi R, Watanabe M, Minami H, Hidaka H (1991) Purification, characterization, and partial sequence analysis of a newly identified EF-hand type 13-kDa Ca (2+)-binding protein from smooth muscle and non-muscle tissues. J Biol Chem 266:18668–18673

    CAS  PubMed  Google Scholar 

  22. Sakaguchi M, Miyazaki M, Inoue Y, Tsuji T, Kouchi H, Tanaka T, Yamada H, Namba M (2000) Relationship between contact inhibition and intranuclear S100C of normal human fibroblasts. J Cell Biol 149:1193–1206

    Article  CAS  PubMed  Google Scholar 

  23. Mailliard WS, Haigler HT, Schlaepfer DD (1996) Calcium-dependent binding of S100C to the N-terminal domain of annexin I. J Biol Chem 271:719–725

    Article  CAS  PubMed  Google Scholar 

  24. Sakaguchi M, Miyazaki M, Takaishi M, Sakaguchi Y, Makino E, Kataoka N, Yamada H, Namba M, Huh NH (2003) S100C/A11 is a key mediator of Ca2+-induced growth inhibition of human epidermal keratinocytes. J Cell Biol 163:825–835

    Article  CAS  PubMed  Google Scholar 

  25. Gartel AL, Serfas MS, Tyner AL (1996) p21-negative regulator of the cell cycle. Proc Soc Exp Biol Med 213:138–149

    CAS  PubMed  Google Scholar 

  26. Schwartz GK (2002) CDK inhibitors: cell cycle arrest versus apoptosis. Cell Cycle 1:122–123

    CAS  PubMed  Google Scholar 

  27. Han Z, Wei W, Dunaway S, Darnowski JW, Calabresi P, Sedivy J, Hendrickson EA, Balan KV, Pantazis P, Wyche JH (2002) Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem 277:17154–17160

    Article  CAS  PubMed  Google Scholar 

  28. Detjen KM, Murphy D, Welzel M, Farwig K, Wiedenmann B, Rosewicz S (2003) Downregulation of p21 (waf/cip-1) mediates apoptosis of human hepatocellular carcinoma cells in response to interferon-gamma. Exp Cell Res 282:78–89

    Article  CAS  PubMed  Google Scholar 

  29. Kwon YH, Jovanovic A, Serfas MS, Tyner AL (2003) The Cdk inhibitor p21 is required for necrosis but it inhibits apoptosis following toxin-induced liver injury. J Biol Chem (epub ahead of print)

  30. Waldman T, Lengauer C, Kinzler KW, Vogelstein B (1996) Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381:713–716

    Article  CAS  PubMed  Google Scholar 

  31. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  32. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  CAS  PubMed  Google Scholar 

  33. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9

    Article  PubMed  Google Scholar 

  34. St John LS, Sauter ER, Herlyn M, Litwin S, Adler-Storthz K (2000) Endogenous p53 gene status predicts the response of human squamous cell carcinomas to wild-type p53. Cancer Gene Ther 7:749–756

    Article  PubMed  Google Scholar 

  35. Katsuda K, Kataoka M, Uno F, Murakami T, Kondo T, Roth JA, Tanaka N, Fujiwara T (2002) Activation of caspase-3 and cleavage of Rb are associated with p16-mediated apoptosis in human non-small cell lung cancer cells. Oncogene 21:2108–2113

    Article  CAS  PubMed  Google Scholar 

  36. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  CAS  PubMed  Google Scholar 

  37. Ruemmele FM, Dionne S, Qureshi I, Sarma DS, Levy E, Seidman EG (1999) Butyrate mediates Caco-2 cell apoptosis via up-regulation of pro-apoptotic BAK and inducing caspase-3 mediated cleavage of poly-(ADP-ribose) polymerase (PARP). Cell Death Differ 6:729–735

    Article  CAS  PubMed  Google Scholar 

  38. Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, Kroemer G (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84:215–222

    Article  CAS  PubMed  Google Scholar 

  39. Larochette N, Decaudin D, Jacotot E, Brenner C, Marzo I, Susin SA, Zamzami N, Xie Z, Reed J, Kroemer G (1999) Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp Cell Res 249:413–421

    Article  CAS  PubMed  Google Scholar 

  40. Fonfria E, Dare E, Benelli M, Sunol C, Ceccatelli S (2002) Translocation of apoptosis-inducing factor in cerebellar granule cells exposed to neurotoxic agents inducing oxidative stress. Eur J Neurosci 16:2013–2016

    Article  CAS  PubMed  Google Scholar 

  41. Mittelman JM, Gudkov AV (1999) Generation of p53 suppressor peptide from the fragment of p53 protein. Somat Cell Mol Genet 25:115–128

    Article  CAS  PubMed  Google Scholar 

  42. Kanovsky M, Raffo A, Drew L, Rosal R, Do T, Friedman FK, Rubinstein P, Visser J, Robinson R, Brandt-Rauf PW, Michl J, Fine RL, Pincus MR (2001) Peptides from the amino terminal mdm-2-binding domain of p53, designed from conformational analysis, are selectively cytotoxic to transformed cells. Proc Natl Acad Sci U S A 98:12438–12443

    Article  CAS  PubMed  Google Scholar 

  43. Do TN, Rosal RV, Drew L, Raffo AJ, Michl J, Pincus MR, Friedman FK, Petrylak DP, Cassai N, Szmulewicz J, Sidhu G, Fine RL, Brandt-Rauf PW (2003) Preferential induction of necrosis in human breast cancer cells by a p53 peptide derived from the MDM 2 binding site. Oncogene 22:1431–1444

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Rosal RV, Brandt-Rauf PW, Fine RL (2002) Correlation between hydrophobic properties and efficiency of carrier-mediated membrane transduction and apoptosis of a p53 C-terminal peptide. Biochem Biophys Res Commun 298:439–449

    Article  CAS  PubMed  Google Scholar 

  45. Giorello L, Clerico L, Pescarolo MP, Vikhanskaya F, Salmona M, Colella G, Bruno S, Mancuso T, Bagnasco L, Russo P, Parodi S (1998) Inhibition of cancer cell growth and c-Myc transcriptional activity by a c-Myc helix 1-type peptide fused to an internalization sequence. Cancer Res 58:3654–3659

    CAS  PubMed  Google Scholar 

  46. Poulaki V, Mitsiades CS, Joussen AM, Lappas A, Kirchhof B, Mitsiades N (2002) Constitutive nuclear factor-kappaB activity is crucial for human retinoblastoma cell viability. Am J Pathol 161:2229–2240

    CAS  PubMed  Google Scholar 

  47. Thomas RP, Farrow BJ, Kim S, May MJ, Hellmich MR, Evers BM (2002) Selective targeting of the nuclear factor-kappaB pathway enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated pancreatic cancer cell death. Surgery 132:127–134

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-ho Huh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makino, E., Sakaguchi, M., Iwatsuki, K. et al. Introduction of an N-terminal peptide of S100C/A11 into human cells induces apoptotic cell death. J Mol Med 82, 612–620 (2004). https://doi.org/10.1007/s00109-004-0560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0560-1

Keywords

Navigation