Skip to main content
Log in

Effect of thiol antioxidant on body fat and insulin reactivity

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Insulin signaling is enhanced by moderate concentrations of reactive oxygen species (ROS) and suppressed by persistent exposure to ROS. Diabetic patients show abnormally high ROS levels and a decrease in insulin reactivity which is ameliorated by antioxidants, such as N-acetylcysteine (NAC). A similar effect of NAC has not been reported for non-diabetic subjects. We now show that the insulin receptor (IR) kinase is inhibited in cell culture by physiologic concentrations of cysteine. In two double-blind trials involving a total of 140 non-diabetic subjects we found furthermore that NAC increased the HOMA-R index (derived from the fasting insulin and glucose concentrations) in smokers and obese patients, but not in nonobese non-smokers. In obese patients NAC also caused a decrease in glucose tolerance and body fat mass. Simultaneous treatment with creatine, a metabolite utilized by skeletal muscle and brain for the interconversion of ADP and ATP, reversed the NAC-mediated increase in HOMA-R index and the decrease in glucose tolerance without preventing the decrease in body fat. As the obese and hyperlipidemic patients had lower plasma thiol concentrations than the normolipidemic subjects, our results suggest that low thiol levels facilitate the development of obesity. Supplementation of thiols plus creatine may reduce body fat without compromising glucose tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4a–f
Fig. 5

Similar content being viewed by others

Abbreviations

C :

Creatine

HL-NSM :

Hyperlipidemic non-smokers

HL-SM :

Hyperlipidemic smokers

IR :

Insulin receptor

MBP :

Myelin basic protein

NAC :

N-Acetylcysteine

NL-NSM :

Normolipidemic non-smokers

NL-SM :

Normolipidemic smokers

OGTT :

Oral glucose tolerance test

P C :

PlaceboCreatine

P N :

PlaceboNAC

ROS :

Reactive oxygen species

References

  1. May JM, DeHäen C (1979) Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cell. J Biol Chem 254:2214–2220

    CAS  PubMed  Google Scholar 

  2. Mukherjee SP, Attaway EJ, Mukerjee C (1982) Insulin-like stimulation by hydrogen peroxide production in adipocytes by insulin receptor antibodies. Biochem Int 4:305

    CAS  Google Scholar 

  3. Krieger-Brauer H, Medda PK, Kather H (1997) Insulin-induced activation of NADPH-dependent H2O2 generation in human adipocyte plasma membranes is mediated by Gi2. J Biol Chem 272:10135–10143

    Article  CAS  PubMed  Google Scholar 

  4. Hayes GR, Lockwood DH (1987) Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. Proc Natl Acad Sci USA 84:8115–8119

    CAS  PubMed  Google Scholar 

  5. Heffetz D, Bushkin I, Dror R, Zick Y (1990) The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J Biol Chem 265:2896–2902

    CAS  PubMed  Google Scholar 

  6. Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N (1998) Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes 47:1562–1569

    Google Scholar 

  7. Hansen LL, Ikeda Y, Olsen GS, Busch AK, Mosthaf L (1999) Insulin signaling is inhibited by micromolar concentrations of H2O2. Evidence for a role of H2O2 in tumor necrosis factor alpha-mediated insulin resistance. J Biol Chem 274:25078–25084

    Article  CAS  PubMed  Google Scholar 

  8. Blair AS, Hajduch E, Litherland GJ, Hundal HS (1999) Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress. Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways. J Biol Chem 274:36293–36299

    Article  CAS  PubMed  Google Scholar 

  9. Kietzmann T, Fandrey J, Acker H (2000) Oxygen radicals as messengers in oxygen-dependent gene expression. News Physiol Sci 15:202–208

    CAS  PubMed  Google Scholar 

  10. Tirosh A, Rudich A, Potashnik R, Bashan N (2001) Oxidative stress impairs insulin but not platelet-derived growth factor signaling in 3T3-L1 adipocytes. Biochem J 355:757–763

    CAS  PubMed  Google Scholar 

  11. Maritim AA, Sanders RA, Watkins JB III (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  CAS  PubMed  Google Scholar 

  12. Haber CA, Lam TKT, Yu Z, Gupta N, Goh T, Bogdanovic E, Giacca A, Fantus IG (2004) N-Acetylcysteine (NAC) and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab (in press)

  13. Dröge W (2002) Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol 37:1333–1345

    Article  PubMed  Google Scholar 

  14. Franceschini G, Werba JP, Safa O, Gikalov I, Sirtori CR (1993) Dose-related increase of HDL-cholesterol levels aftern-acetylcysteine in man. Pharmacol Res 2:213–218

    Article  Google Scholar 

  15. Vita J, Frei B, Holbrook M, Gokce N, Leaf C, Keaney JF Jr (1998)l-2-Oxothiazolidine-4-carboxylic acid reverses endothelial dysfunction in patients with coronary artery disease. J Clin Invest 101:1408–1414

    CAS  PubMed  Google Scholar 

  16. Andrews NP, Prasad A, Quyyumi AA (2001)n-Acetylcysteine improves coronary and peripheral vascular function. J Am Coll Cardiol 37:117–123

    Article  CAS  PubMed  Google Scholar 

  17. Prasad A, Andrews NP, Padder FA, Husain M, Quyyumi AA (1999) Glutathione reverses endothelial dysfunction and improves nitric oxide bioavailability. J Am Coll Cardiol 34:507–514

    Article  CAS  PubMed  Google Scholar 

  18. De Mattia G, Bravi MC, Laurenti O, Cassone-Faldetta M, Proietti A, De Luca O, Armiento A, Ferri C (1998) Reduction of oxidative stress by oraln-acetyl-l-cysteine treatment decreases plasma soluble vascular cell adhesion molecule-1 concentrations in non-obese, non-dyslipidaemic, normotensive patients with non-insulin-dependent diabetes. Diabetologia 41:1392–1396

    Article  PubMed  Google Scholar 

  19. Saltiel AR (2001) New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104:517–529

    CAS  PubMed  Google Scholar 

  20. Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125

    Article  PubMed  Google Scholar 

  21. Blüher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    Article  PubMed  Google Scholar 

  22. Partridge L, Gems D (2002) Mechanisms of ageing: public or private? Nat Rev Genet 3:165–175

    Article  CAS  PubMed  Google Scholar 

  23. Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299:1342–1346

    Article  PubMed  Google Scholar 

  24. Stöckler-Ipsiroglu S (1997) Creatine deficiency syndromes: a new perspective on metabolic disorders and a diagnostic challenge. J Pediatr 131:510–511

    PubMed  Google Scholar 

  25. Ferrante RJ, Andreassen, OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Daddurah-Daouk R, Hersch SM, Beal MF (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20:4389–4397

    CAS  PubMed  Google Scholar 

  26. Stöckler S, Holzbach U, Hanefeld F, Marquardt I, Helms G, Requart M, Hänicke W, Frahm J (1994) Creatine deficiency in the brain: a new treatable inborn error of metabolism. Pediatr Res 36:409–413

    PubMed  Google Scholar 

  27. Balson PD, Soderlund K, Sjodin B, Ekblom B (1995) Skeletal muscle metabolism during short-duration high intensity exercise: influence of creatine supplementation. Acta Physiol Scand 154:303–310

    CAS  PubMed  Google Scholar 

  28. Hespel P, Op’t Eijnde B, Van Leemputte M, Ursø B, Greenhaff PL, Labarque V, Dymarkowski S, Van Hecke P, Richter EA (2001) Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol (Lond) 536:625–633

    Google Scholar 

  29. Ziegenfuss TN, Rogers M, Lowery L, Mullins N, Mendel R, Antonio J, Lemon P (2002) Effect of creatine loading on anaerobic performance and skeletal muscle volume in NCAA division I athletes. Nutrition 18:398–402

    Article  Google Scholar 

  30. Huso ME, Hampl JS, Johnston CS, Swan PD (2002) Creatine supplementation influences substrate utilization at rest. J Appl Physiol 93:2018–2022

    CAS  PubMed  Google Scholar 

  31. Horwitz S, Irvine S (2001) Update on American death, disease and exercise. Nat Med 7:878

    Article  CAS  Google Scholar 

  32. Hill JO, Wyatt HR, Reed GW, Peters JC (2003) Obesity and the environment: where do we go from here? Science 299:853–855

    Article  CAS  PubMed  Google Scholar 

  33. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638

    Article  PubMed  Google Scholar 

  34. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    CAS  PubMed  Google Scholar 

  35. Kinscherf R, Hack V, Fischbach T, Friedmann B, Weiss C, Edler L, Bärtsch P, Dröge W (1996) Low plasma glutamine in combination with high glutamate levels indicate risk for loss of body cell mass in healthy individuals: the effect ofn-acetyl-cysteine. J Mol Med 74:393–400

    CAS  PubMed  Google Scholar 

  36. Schmid E, El Benna J, Galter D, Klein G, Dröge W (1998) Redox priming of the insulin receptor beta-chain associated with altered tyrosine kinase activity and insulin responsiveness in the absence of tyrosine autophosphorylation. FASEB J 12:863–870

    CAS  PubMed  Google Scholar 

  37. Hack V, Breitkreutz R, Kinscherf R, Röhrer H, Bärtsch P, Taut F, Benner A, Dröge, W (1998) The redox state as a correlate of senescence and wasting and as a target for therapeutic intervention. Blood 92:59–67

    CAS  PubMed  Google Scholar 

  38. Gruppuso PA, Boylan JM, Levine BA, Ellis L (1992) Insulin receptor tyrosine kinase domain auto-dephosphorylation. Biochem Biophys Res Commun 189:1457–1463

    CAS  PubMed  Google Scholar 

  39. Al-Hasani H, Paßlack W, Klein HW (1994) Phosphoryl exchange is involved in the mechanism of the insulin receptor kinase. FEBS Lett 349:17–22

    Article  CAS  PubMed  Google Scholar 

  40. Wei L, Hubbard SR, Hendrickson WA, Ellis L (1995) Expression, characterization, and crystallization of the catalytic core of the human insulin receptor protein-tyrosine kinase domain. J Biol Chem 270:8122–8130

    Article  CAS  PubMed  Google Scholar 

  41. Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed BS, Szapary PO, Rader DJ, Edman JS, Klein S (2003) A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 348:2082–2090

    Article  CAS  PubMed  Google Scholar 

  42. Samaha FF, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams T, Williams M, Gracely EJ, Stern L (2003) A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med 348:2074–2081

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. L. Edler for assistance in the statistical analysis, Mrs. U. Winter and Mr. H. Lips for technical assistance, Mrs. C. Contesse for assistance in the recruitment process, and Mrs. I. Fryson for assistance in the preparation of this manuscript. The studies were funded by the Division of Immunochemistry of the German Cancer Research Center, Germany (Head: W.D.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wulf Dröge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildebrandt, W., Hamann, A., Krakowski-Roosen, H. et al. Effect of thiol antioxidant on body fat and insulin reactivity. J Mol Med 82, 336–344 (2004). https://doi.org/10.1007/s00109-004-0532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0532-5

Keywords

Navigation